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ABSTRACT 
 

Thin-walled Tubes with Pre-folded Origami  

Patterns as Energy Absorption Devices 
 

Jiayao Ma, Balliol College, Oxford 
A dissertation submitted for the degree of Doctor of Philosophy  

in the Department of Engineering Science at the University of Oxford 
Hilary Term, 2011 

 
This dissertation is concerned with a type of energy absorption device made of thin-
walled tubes. The tubes will undergo plastic deformation when subjected to an impact 
loading, and therefore absorb kinetic energy. It has been found that, if the surface of a 
tube is pre-folded according to an origami pattern, the failure mode of the tube can be 
altered, leading to a noticeable increase in energy absorption while at the same time, 
reducing the force needed to initiate plastic deformation within the tube. The main 
work is presented in four parts. 
 First of all, an experimental study of a type of previously reported thin-walled 
square tube with pre-manufactured pyramid patterns on the surface has been conducted. 
Quasi-static axial crushing tests show that the octagonal mode, although numerically 
proven to be efficient in terms of energy absorption, cannot be consistently triggered.  
 Secondly, a new type of thin-walled tubular energy absorption device, known 
as the origami tube, which has origami pattern pre-fabricated on the surface, has been 
studied. A family of origami patterns has been designed for tubes with different 
profiles. The performances of a series of origami tubes with various configurations 
subjected to quasi-static axial crushing have been investigated numerically. It is found 
that a new failure mode, referred to as the complete diamond mode, can be triggered, 
and both over 50% increase in the mean crushing force and about 30% reduction in the 
peak force can be achieved in a single tube design in comparison with those of a 
conventional square tube with identical surface area and wall thickness. A theoretical 
study of the axial crushing of square origami tubes has been conducted and a 
mathematical formula has been derived to calculate the mean crushing force. 
Comparison between theoretical prediction and numerical results shows a good 
agreement. Quasi-static axial crushing experiments on several square origami tube 
samples have been carried out. The results show that the complete diamond mode is 
formed in the samples and both peak force reduction and mean crushing force increase 
are attained. 
 Thirdly, a new type of curved thin-walled beam with pre-manufactured origami 
pattern on the surface, known as the origami beam, has been designed and analyzed. A 
numerical study of a series of origami beams with a variety of configurations subjected 
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to quasi-static lateral bending has been conducted. The results show that two new 
failure modes, namely, the longitudinal folding mode and the mixed mode, can be 
induced, and both reduced peak force and increased energy absorption are achieved.  
 Finally, a number of automobile frontal bumpers, which have the origami tube 
and the origami beam as key components, have been designed and analyzed. Three 
impact tests have been conducted on each bumper. The numerical results show that 
both types of origami structures can perform well in realistic loading scenarios, leading 
to improved energy absorption of the bumpers. 
 
Keywords: Thin-walled tube, thin-walled beam, origami pattern, energy absorption 
device, axial crushing, lateral bending, finite element analysis.  
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CHAPTER 1 
INTRODUCTION 

 

 

 
1.1 Thin-walled Energy Absorption Devices 
 

Impact accidents are unfortunate but common occurrences. An astonishing increase in 

traffic accidents has been witnessed accompanying the rapid development of the 

transportation vehicle industry. A report from the World Health Organization (WHO, 

2004) pointed out that around 1.2 million people were killed and up to 50 million 

injured in road accidents each year. In addition, it was predicted that road traffic 

injuries could be the third leading cause of disease and injury by 2020 due to the 

expansion of car markets especially in less developed countries. Apart from severe 

injuries to human beings, an impact, once happens, often leads to catastrophic damages 

to the structures of the vehicles involved and the surrounding environment.  

 

A most common approach of minimizing the loss of life and property in an impact 

accident is to install energy absorption devices in the structures, which are designed to 

convert, totally or partially, kinetic energy into another form of energy during the 

accident so that damages to the important main structures are mitigated (Alghamdi, 

2001). An ideal energy absorption device should meet the following requirements (Lu 

and Yu, 2003):  

 Irreversible energy conversion to avoid a second impact caused by energy release. 

 Long stroke to allow space for plastic deformation. 

- 1 - 
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 Stable and repeatable deformation mode to ensure predictable performance in each 

impact. 

 Restricted and constant reactive force so that no excessive force is transmitted to 

the main structure to be protected.  

 Light weight and high energy absorption to absorb as much energy as possible.  

 Low cost and easy installation as it is a one-shot device and needs replacement 

after an impact accident.  

 

Practically, two parameters are extensively applied to evaluate the energy absorption 

performance of a device: the specific energy absorption (SEA), defined as the energy 

absorption per unit mass, and the load uniformity, defined as the ratio of the peak force 

to the mean crushing force. Here the peak force is the highest reaction force during the 

crushing process and the mean crushing force is the total energy absorption dividing 

the final crushing distance.  
 

 
 

Thin-walled tubes are among the most commonly used energy absorption devices due 

to their high manufacturability and low cost. The main deformation modes of thin-

walled tubes include axial compression (Abramowicz and Jones, 1986), lateral 

compression (Reddy and Reid, 1980), lateral indentation (Lu, 1993), tube inversion 

(Miscow F and Al-Qureshi, 1997), and tube splitting (Reddy and Reid, 1986). Lateral 

compression and lateral indentation of tubes can lead to a smooth force vs 

displacement curve, but the SEA is relatively low because the stroke length is small. 

Tube inversion and tube splitting can generate a quite high SEA, but requires special 

 
Fig. 1.1  An automobile bumper (source: http://www.suspa.com/index.php?id=1284). 
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dies for the deformation modes to be induced. Axial compression of tubes has the 

merits of a relatively long stroke length, high SEA, and mechanical simplicity, and is 

therefore widely applied in practice. The main energy dissipation mechanism of this 

type of device is material plastic deformation. In automobiles such devices, Fig. 1.1, 

also known as crashcans, are mounted between the bumper beam and the main frame 

of a vehicle. They are designed to absorb energy during a low speed collision. The 

primary energy absorbers in trains, Fig. 1.2(a), are similar thin-walled tubes with a 

square cross section (Mayville et al., 2003; Martinez et al., 2004; Tyrell et al., 2006). 

Tubular devices are also found in helicopter landing gears, Fig. 1.2(b), except that they 

generally have a circular cross section (Airoldi and Janszen, 2005; Airoldi et al., 2006). 

Because different designs result in different performances, it remains a challenge to 

achieve both high SEA and low load uniformity while reducing cost.    
 

 
  

Thin-walled beams are another type of commonly used energy absorption device. A 

typical example is a bumper beam, Fig. 1.1. It usually adopts a curved profile with a 

box cross section and is designed to absorb kinetic energy as well as to transmit the 

impact loading to the two crashcans in a frontal collision. Thin-walled beams are also 

seen in roadside guardrail systems (Reid et al., 2002), Fig. 1.3, designed to contain and 

re-direct out-of-control vehicles in order to reduce injuries to the occupants and 

damages to the vehicles themselves (AASHTO, 1995). Unlike the axial compression of 

        

                                                    (a)                                                                (b) 
Fig. 1.2  (a) Primary energy absorbers in a train (source: Martinez et al., 2004), and (b) crash tube in 

a helicopter landing gear (source: Airoldi and Janszen, 2005). 
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thin-walled tubes which generates extensive material plastic deformation, the lateral 

bending collapse of thin-walled beams features localized plastic deformation, leading to 

relatively low energy absorption efficiency. Therefore despite having practical 

applications, thin-walled beams have not received much attention from researchers and 

engineers.  
 

 
 

 
1.2 Origami Patterns 
 

Origami is an ancient Japanese art of producing intricate 2D or 3D models through 

folding paper or cards. In its traditional form, a piece of paper is formed into an endless 

variety of shapes following a pattern design. Figure 1.4 shows a number of origami 

models made out of different patterns. The basic technique of origami is folding with 

two types of folding creases, namely the valley and the mountain creases. A folding 

pattern is produced by combining and arranging those creases.  

 

An obvious yet significant application of origami is to use it to control the deformation 

process and final configuration of a thin sheet of material. This shape changing 

property of origami makes it possible to be applied in a variety of engineering fields in 

which configuration design and control are vital. Current applications of origami can 

be classified into two categories. One involves the design of arbitrary shapes. For 

instance, a technique known as “DNA-Origami” manages to fold long, single-stranded 

DNA molecules into arbitrary 2D shapes in order to create nanostructure shapes of 

 

Fig. 1.3  A guardrail system (source: Reid et al., 2002). 
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high complexity (Rothemund, 2006). The other is for packaging structures so that they 

can be conveniently stored or transported. Deployable cylinders, mainly used as 

inflatable deployable booms in aerospace engineering, fall into this category (Guest, 

1994; Guest and Pellegrino, 1994a, 1994b, 1996; Barker and Guest, 1998; Sogame and 

Furuya, 1998; Tsunoda and Senbokuya, 2002; You and Cole, 2006).  
 

 
 

In both categories of applications, structures with origami patterns are required to be 

deployed and folded with minimum effort, implying a small variation in strain energy 

during the folding process. At the other end of the spectrum, some origami objects may 

induce large deformation in thin-walled materials. This feature has never been fully 

explored.  

 

 
1.3 Aim and Scope 
 

Comparison of the behaviour of thin-walled tubular energy absorption devices and 

deployable cylinders clearly demonstrates the strong correlation between collapse 

mode and energy absorption capability. A normal tube requires a great deal of energy 

to be crushed axially because it follows a particular failure mode, whereas a tube with 

a type of origami pattern on the surface can be folded with ease if the pattern is 

carefully selected and its folding follows the given pattern. Therefore if we can use 

origami patterns to direct a thin-walled tube to collapse in a failure mode that involves 

extensive material plastic deformation, high energy absorption could be achieved.   

 

Fig. 1.4  Origami models. 
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The aim of the work is to explore the possibility of designing high-performance thin-

walled tubular energy absorption devices by means of innovative application of 

origami patterns. Specifically, a family of novel origami patterns are developed to 

design thin-walled tubes subjected to axial compression and thin-walled beams 

subjected to lateral bending, referred to as the origami tube and the origami beam, 

respectively, in the dissertation due to the fact that they have origami patterns on the 

surface. This dissertation concentrates on the structural design and analysis of the 

origami tube and the origami beam, in which numerical, analytical and experimental 

approaches are employed. Since the concepts developed here are purely structural, they 

can be applied to energy absorption devices with various dimensions and material 

types.   

 

The main contents of the dissertation are as follows: 

 Structural design of the origami tube as an energy absorption device. 

 Numerical, analytical, and experimental analyses of the quasi-static axial crushing 

of the origami tube. 

 Manufacturing of the origami tube. 

 Structural design of the origami beam. 

 Numerical analysis of the quasi-static lateral bending of the origami beam. 

 Structural design of automobile bumpers with the origami tube and the origami 

beams as key components. 

 Numerical analysis of the frontal impacts of the automobile bumpers. 

 

 
1.4 Layout of Dissertation 
 

A brief review of previous work relevant to thin-walled tubular structures is provided 

in Chapter 2. Emphasis is placed on the static and dynamic axial crushing of circular 

and square tubes, i.e., thin-walled tubes with circular and square cross sections, as well 

as existing designs of thin-walled tubes and beams for the purpose of energy 

dissipation. A number of deployable cylinder designs are also reviewed in this chapter. 
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In Chapter 3 an experimental study of a type of previously reported thin-walled square 

tube with pyramid patterns on the surface is presented. A simple manufacturing 

approach is developed to construct the geometrically complicated patterned tubes. 

Eight physical tube samples are axially crushed quasi-statically and their failure modes 

and energy absorption properties are compared with the numerical results obtained 

from finite element analysis. The study provides useful insight for the main work in the 

dissertation. 

 

Chapters 4 and 5 address the design and analysis of the origami tube.  

 

Chapter 4 focuses on the numerical study of the origami tube. The theoretical basis of 

applying origami patterns in the design of thin-walled tubes is first presented. 

Following are the design and geometric analysis of a family of novel origami patterns 

for origami tubes with square, rectangular, polygonal cross sections, and two types of 

tapered shape. Subsequently four groups of origami tubes with varying configurations 

are designed and analyzed to investigate the failure mode and energy absorption 

properties of the origami tube subjected to quasi-static axial crushing. Finally, several 

important factors influencing the performance of the origami tube as a practical energy 

absorption device, the dependence of the performance on boundary condition and 

material, the effect of reinforcing the origami tube with a centre web, the bending 

capacity and torsion capacity, and the response under dynamic axial crushing, are 

discussed.  

 

The analytical and experimental studies of the origami tube are given in Chapter 5. 

Analytically, a basic folding element is established to describe the folding process of 

the origami tube, and a theoretical formula is derived to estimate the mean crushing 

force of square origami tubes. Experimentally, a simple manufacturing approach is 

developed to fabricate square origami tubes. Three physical tube samples are axially 

crushed quasi-statically and the experimental data are compared with the numerical 

results. A refined manufacturing approach is also proposed to overcome the drawbacks 

of the simple one and prototypes with high quality are attained.  
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Chapter 6 addresses the design and analysis of the origami beam. An origami pattern is 

proposed and a pattern geometry definition is developed. A series of origami beams 

with various configurations are designed and their failure modes and energy absorption 

properties when subjected to quasi-static lateral bending are numerically analyzed.  

 

Chapter 7 deals with the design and analysis of automobile bumpers which have the 

origami tube and the origami beam as key components. Three impact tests, the full 

overlap impact at 5 m/s, the 40% overlap impact at 5 m/s, and the 40% overlap impact 

at 20 m/s, are conducted on the bumpers to comprehensively evaluate the 

performances of the origami tube and the origami beam when subjected to practical 

complex loading.  

 

The main achievements of the current research and suggestions of work to be 

conducted in the future are given in Chapter 8, which concludes the dissertation. 
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CHAPTER 2 
REVIEW OF PREVIOUS WORK 

 

 

 

Reviews of four topics are presented in this chapter. The first is a survey of previous 

work on the axial crushing of circular and square tubes most relevant to the origami 

tube developed in this dissertation. Static buckling, static axial crushing, and dynamic 

axial crushing of the two types of tubes are covered in this part. The second is a review 

of previous thin-walled tubular energy absorption devices with various structural 

designs and material types. The merits and drawbacks of each design are discussed. 

The third is a summary of existing thin-walled beam designs. Beams with various 

structural profiles and those integrated with energy absorption components are 

presented. And finally a series of deployable cylinder designs are reviewed. 

 

 
2.1 Axial Crushing of Circular and Square Tubes 
 
2.1.1 Static buckling 

 

The buckling of thin-walled tubes has always been a very important topic of research. 

Relatively long tubes tend to buckle globally, which phenomenon is called the Euler 

buckling. The critical buckling load of a simply supported long and slim member can 

be calculated by the well-known formula (Timoshenko, 1961) 
 

- 9 - 
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2

cr 2

EIP
L


  (2.1) 

 

in which E is the Young’s modulus, I is the moment of inertia of the cross section, and 

L is the length of the member.  

 

For circular tubes not long and slim enough for the Euler buckling to occur, the 

classical theory (Timoshenko, 1961) predicted the bellows buckling mode, Fig. 2.1(a), 

and the critical buckling load was found to be  
 

 
2

cr 2

2
3(1 )

EtP 





  (2.2) 

 

in which t is the wall thickness of the tube and  is the Poisson ratio.  

 

Experimental results (Robertson, 1928; Lundquist, 1933) revealed that the bellows 

buckling mode only appeared in relatively thick tubes and Eq. (2.2) severely 

overestimated the critical buckling load. To account for this discrepancy, Yoshimura 

(1955) carried out a series of tests and observed the diamond buckling mode in 

relatively thin circular tubes, Fig. 2.1(b), which was later referred to as the Yoshimura 

pattern. He subsequently proposed a new approach to calculate the critical buckling 

load of circular tubes buckling in the diamond mode, which agreed well with 

experimental data.  
 

Allan (1968) later experimentally investigated the buckling of circular tubes with a 

wide range of diameter to wall thickness ratio, D / t, and observed two basic modes of 

buckling failure: relatively thick tubes failed by material yielding which led to the 

bellows mode and relatively thin tubes failed elastically in the diamond mode. The 

maximum load that a circular tube could support without failure due to local buckling 

was also proposed. 
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When it comes to square tubes, it has been found from experiments that when a square 

tube buckles, each side of the tube deforms into several half-waves axially. Moreover, 

the corners of the tube remain at right angles, indicating that there is no bending 

moment at the corners and therefore each side of the tube can be treated as a 

rectangular plate simply supported at its edges (Meng et al., 1983).  

 

The critical buckling load of relatively thin square tubes which buckle elastically can 

be expressed as (Timoshenko, 1961) 
 

 
2 2

cr 2

4
3(1 )

Et tP
b




     
 (2.3) 

 

in which b is the width of the tube. 

 

Relatively thick square tubes buckle plastically. It is usually assumed that the load is 

finally carried by two strips on each side of the tube, and the load is uniformly 

distributed across those strips. The ultimate load is (Timoshenko, 1961) 
 

 
2

u y2

4
3(1 )

tP E 





 (2.4) 

 

in which y is the yield stress. 

 
                                                    (a)                                                    (b) 

Fig. 2.1  (a) The bellows buckling mode, and (b) the diamond buckling mode. 
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2.1.2 Static axial crushing 

 

From the perspective of energy absorption, the post-buckling stage at which a tube is 

axially folded and undergoes large plastic deformation is of more interest because it is 

when a major portion of the energy dissipation occurs. Due to the complexity of the 

post-buckling behaviour of thin-walled tubes, it is quite difficult to trace theoretically 

the entire crushing process of a tube and to obtain the corresponding force vs 

displacement history. Usually only the mean crushing force can be derived analytically 

following a three-step procedure commonly used by previous researchers such as 

Wierzbicki and Abramowicz (1983). First of all, a basic folding element is extracted 

from the crushing process of a tube, which captures the main features of the folding of 

the tube. Subsequently the sources of energy dissipation in the basic folding element 

are identified and the energy absorption from each source is calculated. Finally the 

balance between external work done by the axial force and internal energy dissipated 

in the basic folding element is applied and the mean crushing force is obtained by 

dividing the total energy dissipation by the final crushing distance. 
 

 
 

Axial crushing of circular tubes has been extensively studied. Depending on D / t ratio, 

circular tubes could be crushed in the concertina mode or the diamond mode or a 

mixture of the two. Generally, circular tubes with D / t < 50 deform in the concertina 

mode shown in Fig. 2.2(a), whilst those with D / t > 80 deform in the diamond mode 

shown in Fig. 2.2(b). For the rest, the mixed mode usually takes place (Lu and Yu, 

2003).  

 
                                                   (a)                                                    (b) 
Fig. 2.2  (a) The concertina mode, and (b) the diamond mode (source: Bardi and Kyriakides, 2006). 
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Alexander (1960) was among the pioneer researchers on the theoretical study of 

circular tubes failing in the concertina mode. In his basic folding element illustrated in 

Fig. 2.3(a), the folds were assumed to move completely inward or outward and the 

material was taken as rigid-perfectly plastic. Energy was dissipated through plastic 

bending of the hinges and membrane stretching in between. The mean crushing force 

derived from this model was 
 

 3/2 1/2
m y6P t D  (2.5) 

 

 
 

Abramowicz (1983) later found that a tube could not be completely squashed to zero 

height because of finite folding radius and wall thickness. To account for it, he 

introduced the concept of effective crushing distance which denoted the maximum 

length of a tube that could be crushed without causing excessively large reaction force. 

Subsequently Abramowicz and Jones (1984b) used the effective crushing distance to 

modify Alexander’s model and obtained the following expression for the mean 

crushing force  
 

 
3/2 1/2 2

m y 1/2

6 3.44
0.86 0.57( / )

t D tP
t D







 (2.6) 

 

 
                                                     (a)                                                   (b) 

Fig. 2.3  (a) Idealized concertina mode proposed by Alexander (1960), and (b) realistic concertina 
mode. 
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A further improvement (Abramowicz and Jones, 1986) in which the effective plastic 

flow stress 0  replaced the yield stress y  to account for material strain hardening 

yielded the following formula for the mean crushing force  

 

 
3/2 1/2 2

m 0 1/2

6.31 3.77
0.86 0.57( / )

t D tP
t D







 (2.7) 

 

Wierzbicki et al. (1992) observed from experiments that the folds actually did not go 

completely inward or outward, a phenomenon shown in Fig. 2.3(b). They introduced a 

parameter called the eccentricity factor which was defined as the ratio of the outward 

fold length to the total fold length. However, the eccentricity factor could only be 

obtained empirically. Taking the eccentricity factor into account, the mean crushing 

force became 
 

 3/2 1/2
m 07.94P t D  (2.8) 

 

Singace et al. (1995) later derived a theoretical value for the eccentricity factor and 

proposed a new expression for the mean crushing force as follows 
 

 3/2 1/2 2
m 0 (5.57 1.41 )P t D t   (2.9) 

 

Theoretical study of circular tubes failing in the diamond mode was not as successful. 

Pugsley (1960) observed that when a circular tube was axially crushed, after the initial 

buckling in the Yoshimura pattern, there were usually 3 or 4 diamond shaped lobes left 

around any circumference of the tube. Based on that observation, he proposed a basic 

folding element, Fig. 2.4(a), and derived the corresponding mean crushing force 
 

 2
m y 1 2( )P C t C Dt   (2.10) 

 

in which C1 and C2 are two constants to be determined when the number of lobes 

circumferentially is known.  
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Equation (2.10) was found to underestimate considerably the mean crushing force. To 

improve the accuracy of the theoretical prediction, Pugsley (1979) proposed a modified 

basic folding element, Fig. 2.4(b), and obtained the following formula for the mean 

crushing force which agreed much better with experiment data 
 

   2
m y

1 cos( / 2 ) csc( / 2 )
2

m m m
P t

  



  (2.11) 

 

in which m is the number of lobes circumferentially.  

 

 

 

Singace (1999) later observed that the eccentricity factor also existed in the diamond 

mode. He defined the eccentricity factor for the diamond mode as the ratio of the 

inward fold length to the total fold length, in contrast to that for the concertina mode. 

The mean crushing force derived in this way was 
 

 
2

y 2
m

2[ tan( ) ]
2 32 3

mP Dt t
m m

   
   (2.12) 

 

It should be mentioned that the value of m in the above two formulae can only be 

determined from experiments.  

 

 
                                                    (a)                                                      (b) 

Fig. 2.4  (a) Initial basic folding element for the diamond lobe, and (b) modified basic folding 
element for the diamond mode.  
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Like circular tubes, square tubes also exhibit various failure modes depending on b / t. 

Very thin tubes, e.g., one with b / t = 100, usually fail in the non-compact mode (Reid 

et al., 1986), Fig. 2.5(a). This mode is undesirable from the perspective of energy 

absorption because Euler buckling could result, and this would considerably reduce the 

energy absorption capability.  
 

 
 

Tubes with moderate thickness normally fail in the symmetric mode, Fig. 2.5(b). The 

crushing process of a quarter of a square tube in the symmetric mode, which is made of 

mild steel and has tube width 60 mm, height 120 mm, and wall thickness 1.0 mm, and 

 
                                                  (a)                                                       (b) 

 

(c) 
Fig. 2.5  (a) The non-compact mode, (b) the symmetric mode (source: Reid et al., 1986), and (c) 

crushing process of a quarter of a square tube in the symmetric mode. 
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the corresponding equivalent plastic strain (PEEQ) contours are shown in Fig. 2.5(c) as 

an example. It can be seen that the tube is crushed progressively from the top end. In 

addition, large plastic strain concentrates on the horizontal folds and the corner areas, 

whereas the remaining panels undergo very small plastic deformation. Wierzbicki and 

Abramowicz (1983) established a kinematically admissible and circumferentially 

inextensional basic folding element shown in Fig. 2.6(a), also known as super folding 

element, which consisted of trapezoidal, cylindrical, conical, and toroidal surfaces. 

Two types of plastic hinge lines, i.e., stationary plastic hinge lines which stayed in the 

same place throughout folding and travelling plastic hinge lines which moved as the 

element collapsed, were considered in the element. The energy dissipation of the 

element came from three main sources, i.e., folding along stationary plastic hinge lines, 

propagation of travelling plastic hinge lines, and localized in-plane stretching in the 

toroidal surface which was associated with travelling plastic hinge lines in order to 

satisfy the condition of kinematical continuity of the element. Assuming that this 

folding element could be crushed to zero height, they derived the following formula to 

calculate the mean crushing force for the symmetric mode 
 

 5/3 1/3
m 09.56P t b  (2.13) 

 

The folding wavelength determined in this way was 1/3 2/31.966t b . Another important 

conclusion drawn from the study was that the three sources dissipated the same amount 

of energy. This result indicates that travelling plastic hinge lines, which account for 

two-thirds of the total energy absorption caused by the propagation of themselves and 

the associated in-plane stretching, are most effective at dissipating energy.  
 

 

 
     (a)                                                              (b) 

Fig. 2.6  (a) Inextensional folding element, and (b) extensional folding element.  
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Abramowicz and Jones (1984a, 1986) conducted a series of axial crushing tests on 

steel square tubes and observed three failure modes: the symmetric mode consisting of 

four inextensional elements within one folding wavelength, asymmetric mode A 

consisting of six inextensional and two extensional elements within two folding 

wavelengths, and asymmetric mode B consisting of seven inextensional and one 

extensional elements within two folding wavelengths. Using the super folding element 

theory and taking into consideration of the effective crushing distance, they calculated 

the mean crushing forces for the three modes as follows 

 

 The symmetric mode 
 

 5/3 1/3
013.06mP t b  (2.14) 

 

 Asymmetric mode A 
 

 5/3 1/3 4/3 2/3 2
0 0 010.73 0.79 0.51mP t b t b t      (2.15) 

 

 Asymmetric mode B 
 

 5/3 1/3 4/3 2/3 2
0 0 011.48 0.44 0.26mP t b t b t      (2.16) 

 

These three expressions give very close results to each other for the practical range of 

b / t, so Eq. (2.14) is usually used to estimate the mean crushing force of square tubes 

with moderate thickness.  

 

Chen and Wierzbicki (2001) simplified the super folding element theory and derived 

an expression for the mean crushing force as follows 
 

 3/2 1/2
m 06.68P t b  (2.17) 
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Very thick tubes usually fail in an extensional mode. This failure mode involves 

circumferential extension of a large magnitude and folding along stationary plastic 

hinge lines. Abramowicz and Jones (1984a) derived the mean crushing force based on 

the extensional folding element shown in Fig. 2.6(b) as 
 

 3/2 1/2 2
m 0 08.16 2.04P t b t    (2.18) 

 

The mean crushing force associated with the extensional mode is higher than those of 

the other three modes until / 7.5b t  , indicating that large circumferential membrane 

deformation requires much more energy to be activated than bending in tubes with 

medium thickness which usually have b / t much larger than 7.5. For this reason, 

commonly used thin-walled square tubes as energy absorption devices tend to assume 

an inextensional failure mode.  

 
2.1.3 Dynamic axial crushing 

 

In the real world, axial crushing of energy absorption tubes occurs dynamically 

because they are always subjected to impact loading. Dynamic effects stemming from 

both structure and material substantially complicate the analysis. However, many 

conclusions drawn from a quasi-static analysis can be slightly modified for a dynamic 

analysis provided that dynamic effects such as inertia effects and strain rate effects are 

properly taken into consideration. Here quasi-static analysis refers to an approach in 

which a physical event is accelerated so that it occurs in less time as long as the 

solution remains nearly identical to the true static solution and dynamic effects remain 

insignificant. This approach has the advantage of yielding a nearly static solution in a 

much shorter time, and is therefore widely used in the study of thin-walled energy 

absorption devices.  

 

In low velocity impacts (up to tens of metres per second), dynamic progressive 

buckling, referring to a buckling phenomenon that a tube buckles progressively from 

one end as the crushing proceeds, takes place. In this case the failure mode of a tube 
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under dynamic loading is virtually identical to that under quasi-static loading. Inertia 

effects, which tend to preserve the unbuckled shape of a tube, is not strong enough to 

change the way the tube buckles, and therefore can be neglected. Material strain rate 

effects, which can raise the initial and subsequently yield stress of a material, are 

significant for strain-rate-sensitive materials and thus should be taken into account. In 

practice, strain rate effects are usually included in the analysis by replacing the static 

plastic flow stress 0  mentioned in Section 2.1.2 with the dynamic plastic flow 

stress d
0  which was calculated from the Cowper-Symonds equation as follows 

(Abramowicz and Jones, 1984a, 1984b, 1986; Jones and Abramowicz, 1985): 
  

 
1/d

0

0

1
rq

rC
 


 
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 


 (2.19) 

 

where Cr and qr are material constants, and   is the strain rate which is taken as 

constant here although it varies both spatially and temporally during an impact event. 

 

If the impact velocities are high enough, e.g., when explosive loading is applied 

(Karagiozova et al., 2005), inertia forces would play a crucial role. In this 

circumstance, dynamic plastic buckling, which denotes a buckling phenomenon that 

small amplitude wrinkles are developed simultaneously along the entire length of a 

tube at the beginning of the loading process, occurs. Both inertia effects and strain rate 

effects should be considered on this occasion, and therefore the analytical results 

obtained under quasi-static loading are no longer able to suit this case through simple 

modifications.   

 

Considerable attention has been paid to understanding the transition from dynamic 

progressive buckling to dynamic plastic buckling, which is believed to be influenced 

by the following factors: tube dimensions, material properties, impact velocities, tube 

end boundary conditions, and the magnitude and shape of the initial deformation 

profile (Murase and Wada, 2004). Due to the complexity of this phenomenon, it is 

almost impossible to obtain analytical solutions in the general case. Therefore a 
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common approach is to develop simplified analytical models combining some 

preliminary analytical work together with further numerical study to identify the 

effects of various factors. 

 

Karagiozova et al. (2000) and Karagiozova and Jones (2001; 2002) studied the 

dynamic plastic buckling of circular tubes from the viewpoint of stress wave 

propagation and drew the following conclusions:  

 Dynamic plastic buckling only occurs within a sustained plastic flow under the 

condition of almost constant stress and strain along the entire length of the tube, 

whereas strain localization leads to local buckling and development of progressive 

buckling. 

 Three main factors influencing strain localization are inertia, strain hardening, and 

strain rate sensitivity.  

 Dynamic plastic buckling usually occurs in relative thick tubes made of strain rate 

insensitive materials with large strain hardening ratios.  

 

Karagiozova (2004) and Karagiozova and Jones (2004) used similar theory to study the 

dynamic plastic buckling of square tubes. It was found that plastic stress waves 

propagated at higher speeds along square tubes than along circular tubes. Furthermore, 

sufficiently high plastic wave speeds in combination with the inertia properties of a 

shell could cause different types of buckling to develop in geometrically equivalent 

square and circular shells made of identical material and subjected to identical dynamic 

loading. 

 

 
2.2 Thin-Walled Tubular Energy Absorption Devices 
 
2.2.1 Circular and square tubes with geometric discontinuity  

 

Circular and square tubes are the most commonly used tubular energy absorption 

devices due to their ready availability and low cost. A vast amount of work has been 
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dedicated to improving the performance of circular and square tubes. The main 

challenge in the design is how to eliminate effectively the high initial buckling force 

while maintaining or even enhancing the energy absorption capability.  

 

A simple but effective method of removing the high initial buckling force is to 

introduce some sort of geometric imperfection on the tube. Singace and El-Sobky 

(1997) stamped corrugations, Fig. 2.7(a), on the surface of circular tubes and found 

from experiments that the high initial bucking force was eliminated and the force vs 

displacement curve became more uniform. However, the energy absorption of the 

corrugated tubes was also considerably lower than that of the corresponding straight 

tubes. Another type of commonly used geometric imperfection is dents on circular 

tubes (Mamalis et al., 1986c; Daneshi and Hosseinipour, 2002; Hosseinipour, 2003; 

Hosseinipour and Daneshi, 2003; Mamalis et al., 2003c), Fig. 2.7(b), and on square 

tubes (Lee et al., 1999), Fig. 2.7(c). Similar to corrugations, the presence of dents 

reduces the initial buckling force and leads to smoother force vs displacement curve, at 

the cost of reduced overall energy absorption capability.  
 

 
 

To overcome the disadvantage of corrugations and dents, Zhang et al. (2009) designed 

a type of buckling initiator, Fig. 2.7(d), which was composed of a pre-hit column and 

pulling strips installed near the impact end of a tube. Both initial buckling force 

reduction and preservation of energy absorption capability were achieved by the design.  

 
             (a)                                       (b)                                         (c)                                      (d) 

Fig. 2.7  (a) Corrugated circular tube (source: Singace and El-Sobky, 1997), (b) grooved circular 
tube (source: Hosseinipour and Daneshi, 2003), (c) square tubes with full dents and half dents 

(source: Lee et al., 1999), and (d) square tube with a type of buckling initiator (source: Zhang et al., 
2009). 
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Research has also been conducted on improving the energy absorption of circular and 

square tubes. Adachi et al. (2008) introduced ribs along circular tubes to induce the 

concertina mode which was known to be more efficient in terms of energy absorption 

than the diamond mode (Andrews et al., 1983). As much as about 30% energy 

absorption increase was observed from experiments. Lee et al. (2008) used a controller 

to improve the energy absorption of square tubes and reported about 15% - 20% 

energy absorption increase. The gains of the above two devices, however, are offset by 

their mechanical complexity and high initial bucking force.  

 

An interesting attempt to achieve both initial buckling force reduction and energy 

absorption increase is to pre-manufacture a kind of pyramid pattern on the surface of 

square tubes (Zhang et al., 2007). Numerical results showed that a new failure mode 

named the octagonal mode, which was very similar in configuration to the diamond 

mode of circular tubes, was triggered and both low initial buckling force and high 

energy absorption were obtained. However, it will be shown in Chapter 3 that this 

desirable failure mode cannot be consistently triggered, which is in contradiction to the 

requirement of stable failure mode for energy absorption devices.   

 
2.2.2 Polygonal tubes 

 

It is already known that the SEA of a circular tube is higher than that of a square tube 

with identical circumference, height, and wall thickness (Lu and Yu, 2003). But 

circular tubes are associated with a high initial buckling force which is not easy to be 

reduced without compromising the energy absorption efficiency. Therefore polygonal 

tubes, normally having hexagonal or octagonal cross sections, are frequently used as a 

trade-off between square tubes and circular tubes.  

 

Abramowicz and Wierzbicki (1989) used the super folding element theory to study the 

axial crushing of multi-corner tubes and successfully derived the mean crushing forces 

of tubes with arbitrary number of corners. For example, they found that the 

approximate mean crushing force of hexagonal tubes was 
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 0.4 1.6
m 020.23P b t . (2.20) 

 

Mamalis et al. (1991) conducted quasi-static axial crushing tests on octagonal tubes 

and observed four failure modes, i.e., the inextensional mode, the extensional mode, 

the mixed mode, and the square mode. Mamalis et al. (2003b) later did both finite 

element simulations and physical tests on octagonal tubes, which further confirmed the 

four failure modes. It was also found that the energy absorption capacity of octagonal 

tubes was much higher than that of square tubes and was close to that of circular tubes.  

 

Yamashita et al. (2003) also examined tubes with various polygonal cross sections 

both numerically and experimentally and found that the SEA of a polygonal tube 

increased with the number of corners, but saturated when passed eleven at which point 

a polygonal tube behaved virtually like a circular one.  

 

Similar to circular and square tubes, polygonal tubes also have the problem of very 

high initial buckling force. Little has been published to address this problem, but it is 

reasonable to postulate that those types of geometric imperfection for circular and 

square tubes can also be applied to polygonal tubes and similar effects can be achieved.  

 
2.2.3 Cellular tubes 

 

The choice of a cellular cross section over a single-cell one is based on the observation 

that the SEA of a square tube decreases with b / t. In other words, if two square tubes 

have identical height and wall thickness but different widths, the one with a small 

width will have a higher SEA than that of the one with a large width. This 

phenomenon can be explained as follows. First of all, the folding wavelength of a 

square tube increases with its width (Wierzbicki and Abramowicz, 1983). Therefore 

the tube with a small width has more folds than those of the one with a large width, 

resulting in higher SEA. Secondly, two-thirds of the energy absorption of a square tube 

come from propagation of travelling plastic hinge lines and in-plane stretching in the 
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corner regions whereas the contribution of folding along stationary plastic hinge lines 

is one-third (Wierzbicki and Abramowicz, 1983). Since corner regions take up a larger 

portion of the tube with a small width, a higher SEA can be expected. 

 

The above observation has led to research on multi-cell tubes. Chen and Wierzbicki 

(2001) analytically and numerically studied the axial crushing of double-cell and 

triple-cell tubes, shown in Fig. 2.8(a) and (b), respectively, and reported a noticeable 

SEA increase in comparison with that of conventional square tubes. A simplified basic 

folding element was proposed and the mean crushing forces of the two types of tubes 

were obtained analytically.  
 

 
 

Kim (2002) proposed a new multi-cell tube, Fig. 2.8(c), composed of four square 

tubular components connected by plates. A very short folding wavelength was 

observed due to the small width of the tubular components. Numerical results showed 

that as much as 100% SEA gain could be obtained for the new design compared with 

that of conventional square tubes. Based on the simplified basic folding element 

developed by Chen and Wierzbicki (2001), the mean crushing forces of single-cell, 

double-cell, triple-cell, quadruple-cell (2×2 cell), and the new multi-cell tubes were 

obtained. Table 2.1 lists those results where C denotes the width of the square tubular 

components of the new multi-cell tube and the SEA is calculated using / 3C b .  

Zhang et al. (2006) looked into the energy absorption properties of multi-cell square 

tubes by means of numerical simulation and theoretical analysis. It was found that the 

SEA increased with the number of cells and about a 50% gain in SEA could be 

obtained when the section was divided into 3 × 3 cells.  

 

 
                                      (a)                                     (b)                                    (c) 

Fig. 2.8  (a) Double-cell, (b) triple-cell, and (c) new multi-cell. 
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In spite of the high energy absorption, cellular tubes are not widely applied in practice 

mainly due to two reasons. First of all, an extrusion technique is normally needed to 

construct the geometrically complicated cellular tubes, resulting in high manufacturing 

cost. Secondly, effective reduction of the high initial buckling force of cellular tubes is 

quite difficult especially when the cross section profile is very complicated or the 

number of cells is large.  
 

 
 
2.2.4 Tapered tubes 

 

Tapered tubes are another type of widely applied energy absorption device because of 

their relatively low initial buckling force (Nagel and Thambiratnam, 2005), stable 

force vs displacement response (Mamalis and Johnson, 1983), and high energy 

absorption efficiency when subjected to oblique loads, compared with that of straight 

tubes (Reid and Reddy, 1986). In practice, an energy absorption device is sometimes 

required to connect two structural components with different cross sectional 

dimensions, so that a tapered shape becomes a necessity.  

 

Under axial crushing, truncated circular tubular cones, usually deform in either the 

concertina mode or the diamond mode depending on the geometry of the tube (Mamalis 

and Johnson, 1983; Mamalis et al., 1986a; Mamalis et al., 1986b). For capped frusta 

which have a closed end, inward inversion or outward flattening could also take place 

(Aljawi and Alghamdi, 1999, 2000).  

 

Table 2.1  Comparison of tubes with different cross section profiles (Kim, 2002) 

Cross section profiles Pm Cross section area SEA increase 

Single-cell  3/ 2 1/ 2
06.68 t b  4bt  - 

Double-cell  3/ 2 1/ 2
09.89 t b  5bt  18.4% 

Triple-cell  3/ 2 1/ 2
012.94 t b  6bt  29.1% 

Quadruple-cell  3/ 2 1/ 2
014.18 t b  6bt  41.5% 

New multi-cell  3/2 1/2
017.69 ( 2 )t b C   4( 2 )b C t  105.1% 
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The axial crushing behaviour of truncated square tubular cones is also similar to that of 

straight square tubes in that both the symmetric mode and the extensional mode could 

appear depending on the geometry of the tube (Mamalis et al., 1989).  

 

Because of the similarity between the failure modes of tapered tubes and those of 

corresponding straight ones, the theoretical study approaches for straight tubes can be 

slightly modified to estimate the energy absorption of tapered ones.  

 
2.2.5 Foam-filled tubes 

 

Filling hollow tubes with foam filler has been considered as an effective approach to 

improving the SEA of thin-walled tubes for a long time. Upon axial crushing, the 

tubular envelope and the foam filler constitute a type of composite structure. The foam 

filler acts like an elastic-plastic foundation, which reduces the folding wavelength of 

the tubular envelope, whereas the tubular envelope confines the lateral expansion of the 

foam filler when it is compressed and thus increases its energy absorption.  

 

Early research focused on mild steel tubes filled with polyurethane foam (Reid et al., 

1986; Abramowicz and Wierzbicki, 1988; Reddy and Wall, 1988). Recently, 

aluminium foam and honeycomb which show attractive mechanical properties from the 

perspective of energy absorption have been gaining practical interest. Considerable 

work has been carried out on this topic (Santosa and Wierzbicki, 1998; Santosa et al., 

2000; Hanssen et al., 2000a, 2000b, 2001), from which the advantage of foam filled 

tubes is clearly demonstrated.  

 

In spite of their high SEA, foam-filled tubes have several drawbacks which hinder their 

extensive application in practice. First of all, the effective crushing distance is reduced 

by the foam filler. Secondly, global rupture of the tubular envelope, which is an 

undesirable failure mode, could appear under certain circumstances. Finally, the 

material cost is relatively high.   
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2.2.6 Composite tubes 

 

Composite materials are theoretically a very good alternative to metals due to their 

exceptionally high strength to weight ratio. Tubes made of composite materials can 

offer a SEA much higher than that of tubes made of metals. 

 

Fibre/resin composites are commonly used materials in the design of composite tubes, 

e.g., fibre-reinforced tubes (Farley and Jones, 1992), fibreglass tubes (Mamalis et al., 

1996, 1997), and carbon fibre-reinforced polymer (CFRP) tubes (Mamalis et al., 2005). 

While being able to achieve more than 100% SEA gain, tubes made of fibre/resin 

composites usually fail in brittle, unstable modes involving extensive micro-cracking 

development, delamination and fibre breakage, which are undesirable for an energy 

absorption device. Figure 2.9(a) shows the brittle failure mode of a CFRP tube as an 

example. 
 

 
 

To overcome the drawbacks mentioned above, attention has been paid to externally 

fibre-reinforced metallic tubes which combine the advantages of stable and progressive 

failure mode of metal and lightweight of fibre/resin composite. Axial crushing tests of 

metallic tubes with externally bonded glass fibre (Hanefi and Wierzbicki, 1996; Song et 

al., 2000), and externally bonded CFRP (Bambach and Elchalakani, 2007; Bambach et 

al., 2009a; Bambach et al., 2009b) were conducted. Progressive axial folding shown in 

Fig. 2.9(b) was obtained and more than 50% energy absorption gain could be achieved. 

 
                                                       (a)                                                         (b) 
Fig. 2.9  Crushed configurations of (a) a CFRP tube (source: Mamalis et al., 2005), and (b) a steel-

CFRP tube (source: Bambach and Elchalakani, 2007). 
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However, material fracture and debonding were observed for metallic tubes with low 

ductility when subjected to dynamic loading.   

 

Sandwich tubes are another type of composite tube. A typical sandwich tube is 

composed of two thin, stiff fibreglass facings and a lightweight polymer foam core in 

between. To avoid debonding of the fibreglass facings from the core, which could 

result in immediate loss of all load-bearing capacity and subsequent catastrophic failure, 

local reinforcements are frequently applied to connect the facings and the core. A 

variety of reinforcements, some of which are presented in Fig. 2.10, have been 

proposed and proved to be very effective (Mamalis et al., 2000, 2001; Mamalis et al., 

2002a; Mamalis et al., 2002b; Mamalis et al., 2003a; Pitarresi et al., 2007).  
 

In spite of the superior energy absorption performance, the high cost of composite 

tubes limits their application to areas such as aerospace engineering and race car design. 

Moreover, the relatively inconsistent response of composite tubes is another obstacle to 

be overcome.  
 

 

 

 
2.3 Thin-Walled Beam Designs 
 

 
Fig. 2.10  Sandwich tube local reinforcement designs (source: Pitarresi et al., 2007). 
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Compared with thin-walled tubes, thin-walled beams have a relatively low SEA. The 

low energy absorption efficiency is caused by the lateral bending collapse mode of 

thin-walled beams which usually features a limited number of plastic hinges during the 

crushing process, and therefore only a small amount of material in the neighbourhood 

of the hinges undergoes large plastic deformation. A typical application of this type of 

structure is an automobile bumper beam (Kokkula et al., 2006a; Kokkula et al., 2006b). 

Steel and aluminium alloy are commonly used materials because of high mechinability 

and low cost. Composite beams have also been proposed (Cheon et al., 1995) but their 

practical use is very limited for reasons similar to those for composite tubes.  

 

A vast number of patents on bumper beams exist. The structural design of bumper 

beams can be roughly divided into the following categories: box sectional beams 

(Jonsson, 2003; Jonsson and Juntti, 2005), cellular sectional beams (Amano et al., 

2005; Cumming et al., 2005), reinforced beams (Roussel et al., 2003) shown in 

Fig. 2.11(a), and beams with integrated energy absorption components (Weissenborn, 

2003; Shuler and Trappe, 2006) shown in Fig. 2.11(b).  

 

The lateral bending collapse mode of conventional beams could be altered by 

introducing tension components to trigger membrane deformation in curved beams 

(Carpenter, 1990; Schwartz and Ramoo, 1999).  One of the beams of this type is shown 

in Fig. 2.11(c). While having higher energy absorption, this type of beam is also 

heavier and does not integrate well with the main structure of a vehicle. Therefore a 

better approach to induce the membrane deformation needs to be developed.  

 

To summarize, it can be seen from Section 2.2 and 2.3 that despite a large amount of 

research having been done to develop energy absorption devices, it remains a 

challenge to design a system which has a low initial buckling force, high SEA, stable 

failure mode, integrates well with the main structure, and can be manufactured at a 

reasonable cost. 
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2.4 Deployable Cylinders 
 

Deployable cylinders are a type of deployable structure that have wide application in a 

variety of engineering fields owing to their remarkably high packaging efficiency, 

mechanical simplicity, and lightweight. Origami is extensively utilized in the design of 

deployable cylinders to achieve minimum strain energy variation when folded and 

deployed. 

 

In the area of aerospace engineering, Sogame and Furuya (1998) developed two types 

of snowflake shaped deployable cylinders, namely, the Axially Symmetric Type (AST) 

and the Rotationally Symmetric Type (RST) shown in Fig. 2.12(a) and (b), 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.11  (a) Reinforced beam (source: Roussel et al., 2003), (b) beam integrated with energy 
absorption components (source: Shuler and Trappe, 2006), and (c) beam with a tension component 

(source: Schwartz and Ramoo, 1999). 
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respectively, with potential application as dust shields or lunar base structures in caves. 

Each cylinder can be deployed both radially and axially to achieve a very high 

packaging efficiency. Barker and Guest (1998) did an initial proof-of-concept study of 

the application of triangulated cylinders, Fig. 2.13(a), as inflatable tubes. In contrast to 

those designed by Sogame and Furuya (1998), the radius of the triangulated cylinders 

experiences little change during the deployment process. Tsunoda and Senbokuya 

(2002) also introduced folding patterns to inflatable tubes, Fig. 2.13(b), for the purpose 

of efficient packaging. A 9.6 m long tube can be folded to about 0.2 m in length by the 

patterns. You and Cole (2006) proposed a self-locking bi-stable deployable cylinder 

with both ends closed based on a novel origami pattern. The advantage of this design is 

that very small in-plane strains are generated during the deployment process. 
 

 
 

 

 
                              (a)                                         (b)                                            (c) 

Fig. 2.13  (a) A triangulated cylinder (source: Barker and Guest, 1998), (b) folded and deployed 
configurations of an inflatable tube (source: Tsunoda and Senbokuya, 2002), and (c) a 6-sided 

deployable cylinder (source: You and Cole, 2006). 

 
(a) 

 
(b) 

Fig. 2.12  Deployment processes of (a) AST, and (b) RST (source: Sogame and Furuya, 1998). 
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In the area of medical engineering, Kuribayashi (2004) utilized a family of origami 

patterns to develop a foldable tubular origami stentgraft. The device can be deployed in 

both radial and axial directions with very small in-plane material deformation, thus 

making it possible to construct a stentgraft out of a single sheet of material accurately. 
 

 
 

Compared with origami cylinders with open ends, deployable cylindrical enclosures 

where both ends are closed, such as the one designed by You and Cole (2006), are very 

difficult to design. The reason is that in the former, it is possible to create an origami 

pattern that keeps all panels rigid and all creases acting as rotational hinges, and 

therefore the resultant origami structure is strain-free during the entire folding process. 

In the latter, on the other hand, such a pattern does not exist because of the bellows 

conjecture proved by Connelly et al. (1997). This conjecture states that for a 

triangulated polyhedral surface forming an enclosure of a constant volume to flex as a 

mechanism, the volume of the enclosure must remain constant. The implication of the 

conjecture is that it is impossible to design a deployable cylinder with closed ends 

which can be folded like a perfect mechanism, provided that the volume enclosed by 

the cylinder varies during the process. There must be variation in strain energy during 

the folding of any practical deployable cylindrical enclosure. However, the magnitude 

of strain energy variation depends on the pattern put on a cylinder. The above 

examples demonstrate that a good selection of origami pattern can effectively reduce 

the strain energy involved in the folding of a deployable cylindrical enclosure. 

Following this lead, it is believed that a tube with a properly chosen pre-folded origami 

 
Fig. 2.14  Fully deployed and folded configurations of an origami stentgraft (source: Kuribayashi, 

2004). 
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pattern may lead to a structure that is hard to fold. In other words, the folding requires 

a large amount of energy input. This idea is extensively explored in this dissertation in 

design of cylindrical energy absorption devices.  
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CHAPTER 3 
SQUARE TUBES WITH PYRAMID 

PATTERNS 
 

 

 

It was mentioned in Chapter 2 that one approach to increase the energy consumed to 

fold a thin-walled square tube was to pre-manufacture a kind of pyramid shaped 

pattern on its surface (Zhang et al, 2007). A new failure mode called the octagonal 

mode was observed from the numerical analysis and substantial energy absorption 

increase was achieved. However, no experiments have been conducted mainly due to 

the difficulty in constructing the patterned tubes. 

 

In this chapter the effectiveness of the pyramid pattern at triggering the octagonal 

mode in thin-walled square tubes is investigated experimentally. Section 3.1 describes 

a method of manufacturing the geometrically complicated patterned tube samples. 

Section 3.2 focuses on the finite element analysis (FEA) of the quasi-static axial 

crushing of the patterned tubes using Abaqus/Explicit (SIMULIA Corp., USA) prior to 

physical experiments. Subsequently in Section 3.3 the physical tube samples are 

crushed quasi-statically and the experimental results are compared with the numerical 

data. Finally a summary is given in Section 3.4. 

 

 
3.1 Sample Preparation and Experimental Setup 
 

- 35 - 
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3.1.1 Sample preparation  

 

The basic pyramid element of the pattern is shown in Fig. 3.1(a). Element width p, 

length q, and height h, i.e., the distance from the base to the apex, completely define 

the geometry of the basic pyramid element. The arrangement of the basic pyramid 

element on each side of the tube is determined by the number of elements in the axial 

direction Na and in the transverse direction Nt. Note that the apex of the basic pyramid 

element can be directed outward or inward, as illustrated in Fig. 3.1(b), which affects 

the failure mode of the tube.     
 

 
 

As the surface of the pattern is not developable, it is impossible to produce a patterned 

tube out of a metal sheet without in-plane deformation. However, for thin-walled 

tubes, two manufacturing methods exist. One is to stamp out the pyramid pattern on a 

metal sheet and then to weld four sheets together to form a tube. The alternative is to 

stamp out the pattern directly on the sides of a conventional square tube. The tube 

walls would not be noticeably thinner by the stamping.  

 

One tube with p = 20 mm, q = 30 mm, h = 2 mm, Na = 4, and Nt = 3, which was 

reported to have an energy absorption increase by 56.41%, was adopted here for 

prototyping. Since relatively thin steel square tubes with the suggested cross-sectional 

dimension were not readily available, the first manufacturing procedure was employed. 

A pair of male and female moulds, Fig. 3.2, was designed and manufactured for this 

 
                                           (a)                                                          (b) 

Fig. 3.1  (a) Basic pyramid element, and (b) a square tube with pyramid pattern. 
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purpose. Steel sheets with wall thickness t = 1.0 mm were used to construct tube 

samples. A welding technology called Gas Tungsten Arc Welding (GTAW) was 

applied. This technique has the following advantages 

 The heat of the electric arc is centralized and the molten spot is small.  

 The heat-affected zone is narrow.  

 The welding process is fast.  

 The welding distortion is small.  

 Oxidation and absorption of noxious gas is prevented, resulting in compact weld 

joints.  

 Weld joints with good mechanical performance are obtained.          
 

 
 

Two potential problems associated with this manufacturing method were also 

considered. One was that the corner areas of the samples might be too rigid due to the 

weld joints. A modified version of the prototype which had one transitional plate at 

each corner was designed to mitigate this problem. By applying this modification, a 

sharp corner line was replaced by a narrow plate with finite width, and thus the effect 

of the rigid weld joints was diluted and the stiffness of the tube was more even across 

the cross section. The other one was that residual stress existed in the samples because 

of the stamping process and heat effects. This problem was dealt with by means of 

annealing. The procedure of heating in a Carbolite furnace at 600°C for 30 minutes and 

then slowly cooling down in the furnace was adopted. The samples also became more 

ductile after annealing.  

 
Fig. 3.2  Moulds for pattern stamping. 
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Three types, eight samples in total were manufactured, including two conventional 

square tubes named C1 and C2, four patterned tubes designated as P1 to P4 in which 

P3 and P4 were annealed, and two patterned tubes with corner modification called M1 

and M2. The width and height of the conventional tubes were chosen to be identical to 

those of the patterned tubes, i.e., 60 mm and 120 mm, respectively. The modified 

patterned tubes had identical geometry with the patterned tubes except for the 

transitional plate at each corner which was 10 mm wide and formed identical angles 

with adjacent tube sides. In addition, the weld joint was located in the middle the 

transitional plate. Representatives of the three types of tubes are shown in Fig. 3.3.  
 

 

 

3.1.2 Experimental setup 

 

The axial crushing tests were conducted on an Instron 5582 testing machine with the 

upper loading limit of 100 kN. In the test a tube stood on a thick plate and the cross 

head connected to the load cell moved downward to compress the tube. The speed of 

the cross head was chosen as 1 mm / min so that material strain rate effects could be 

safely neglected. The final crushing distance was set to 85 mm which was about 73% 

of the initial length of the tubes. 

 

Pinned boundary conditions on both ends of the tube, as shown in Fig. 3.4(a), were 

adopted here to eliminate the effect of arbitrary movement of the tube ends on the 

forming of the octagonal mode. The constraints were realized by inserting each end of 

                        
(a)                                                  (b)                                                  (c) 

Fig. 3.3  (a) Conventional tube, (b) patterned tube, and (c) modified patterned tube. 
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the tube into a steel block, Fig. 3.4(b), machined with 2 mm wide and 3 mm deep 

channels. 
 

 
 

The mechanical properties of as-received material without heat treatment and annealed 

material subjected to identical heat treatment with the tube samples were characterized 

by material tensile tests. Three specimens were tested for each material. Typical 

engineering stress vs strain curves of the two materials are plotted in Fig. 3.5. The 

averaged yield stress y , tensile strength u , and ultimate strain u of the two 

materials are listed in Table 3.1. In addition, the density, Young’s Modulus, and 

Poisson ratio of both materials were chosen as   = 7800 Kg/m3, E = 210 GPa, and 

  = 0.3.  
 

 

 
Fig. 3.5  Material engineering stress vs strain curves. 
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                                            (a)                                                                     (b)               

Fig. 3.4  (a) Pinned boundary conditions, and (b) a block with channels. 



www.manaraa.com

Chapter 3 Square Tubes with Pyramid Patterns 

- 40 - 

 

 

 

3.2 Numerical Simulation of the Axial Crushing 
 
3.2.1 Finite element modelling 

 

A series of numerical simulations of the quasi-static axial crushing of the three types of 

tube samples were conducted prior to the physical tests to determine whether the 

desired failure mode could be triggered under the experimental conditions.  

 

A total of four tube models were analyzed, including one conventional tube named 

Conventional with as-received material, two patterned tubes Patterned1 with as-

received material and Patterned2 with annealed material, and one modified patterned 

tube called Modified with as-received material. The numerical models had identical 

geometries with the corresponding physical samples. Moreover, a trigger in the form of 

a dent was introduced near the upper end of Conventional in order to generate a stable 

and progressive failure mode.  

 

Commercial FEA software package Abaqus (SIMULIA Corp., USA) was applied to 

simulate the axial crushing process. The crushing scenario was modelled by a tube on a 

stationary rigid panel and subjected to compression by a moving rigid panel. The tube 

was mainly meshed with quadrilateral elements, with only a few triangular elements 

being used to avoid excessive distortion. The lower end of the tube was constrained by 

three translational degrees of freedom, and the upper one was coupled to the moving 

rigid panel by three translational degrees of freedom. All the degrees of freedom of the 

stationary rigid panel were fixed, whereas only the translational one of the moving 

rigid panel in the axial direction of the tube was free of constraint. Prescribed 

downward displacement of 85 mm was applied to the free translational degree of 

Table 3.1  Material mechanical properties 

Material y  (MPa) u  (MPa) u  

As-received 278.4 322.0 21.6% 

Annealed 184.3 311.0 24.9% 
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freedom of the moving rigid panel to control the crushing distance. Two types of 

contacts were established: self-contact for tube walls, and surface-to-surface contact 

between tube walls and each rigid panel. Friction was taken into consideration and the 

friction coefficient μ was taken as 0.25 (Zhang et al., 2009). The constitutive behaviour 

of the material was assumed to be elastic-plastic and follow Von Mises yield criteria 

and isotropic hardening rule.   

 

Three important points were considered in the numerical simulation in order to obtain 

reliable results. First of all, the axial crushing process was quasi-static due to the very 

slow loading rate chosen in the experiments. However, the Abaqus Standard solver, 

designed to solve static problems, was not effective at simulating the axial crushing of 

thin-walled tubes due to extensive contact and local buckling which often made 

numerical convergence very slow or impossible. Therefore the Abaqus Explicit solver, 

designed to solve dynamic problems, was applied here to simulate the crushing process 

quasi-statically. The key to the success of this method was to choose a proper analysis 

time which was long enough to guarantee that the crushing process was quasi-static but 

also as short as possible to be finished with reasonable computational cost. To ensure 

that dynamic effects were negligible in the analysis, the requirement recommended by 

Abaqus documentation (SIMULIA Corp., USA) that the ratio of the kinetic energy to 

the internal energy was below 5% during most of the analysis time was checked. The 

smooth amplitude built in Abaqus (SIMULIA Corp., USA), which guaranteed zero 

loading speed both at the beginning and at the end of the crushing process, was 

assigned to the prescribed displacement of the moving rigid panel. The second point 

was the choice of element. Four-node shell element with reduced integration S4R, 

which allowed finite membrane strains and arbitrarily large rotations, was cheap and 

effective to solve problems involving large deformation and complicated contacts, but 

it had the problem of hourglassing. To ignore safely the hourglassing effect, the 

requirement recommended by Abaqus documentation (SIMULIA Corp., USA) that the 

ratio of the artificial energy to the internal energy was below 5% was also checked. 

The third point was whether a whole tube, a half of a tube, or a quarter of a tube should 

be modelled in the numerical simulation, considering that all the tubes studied here had 
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symmetric properties. The quarter-tube modelling and the half-tube modelling 

approaches could save a lot of computational time but might lose asymmetric buckling 

modes. While being able to capture all possible buckling modes, the whole-tube 

modelling approach was not only computationally expensive but might also cause 

other numerical problems (Meguid et al., 2007). To determine the most appropriate 

modelling approach, both the whole-tube modelling and the half-tube modelling 

approaches were used to study Patterned2. It was found out that the failure modes 

obtained from both approaches were symmetric and matched each other quite well. 

Thus only a half of each tube was modelled in the analysis here, and symmetric 

boundary conditions were applied to the edges on the plane of symmetry.  

 

Convergence tests in terms of mesh density and analysis time, respectively, were also 

conducted. Patterned2 was selected for the tests and the two requirements 

recommended in Abaqus documentation (SIMULIA Corp., USA) were checked. First 

of all, Patterned2 was meshed with three densities, coarse with 8580 elements, medium 

with 18296 elements, and fine with 33752 elements, and analyzed under an identical 

analysis time of 0.02s. The mean crushing force for each mesh density was calculated 

and normalized against that for the fine mesh density. The following equation was used 

to calculate the mean crushing force 
 

 0
m

( )P x dx
P




   (3.1) 

 

where   is the final crushing distance. 

 

The data presented in Table 3.2 showed a clear trend of convergence, and the 

difference between the normalized Pm for the medium mesh density and that for the 

fine mesh density was within 5%. It was found from Fig. 3.6, where the ratio of the 

artificial energy (AE) to the internal energy (IE) AE / IE was plotted against 

displacement, that the ratios for both the medium and the fine mesh densities were 

below 5%. Therefore the medium mesh density was selected.  
 



www.manaraa.com

Chapter 3 Square Tubes with Pyramid Patterns 

- 43 - 

 

 
 

 
 

Subsequently Patterned2 with medium mesh density was analyzed under three 

different analysis times, i.e., short with 0.01s, middle with 0.02s, and long with 0.04s. 

A clear trend of convergence was again observed from the results shown in Table 3.3. 

The difference between Pm obtained from the short analysis time and that from the 

long analysis time was within 5%. The same is also true by comparing Pm obtained 

from the middle analysis time and that from the long analysis time. In addition, the 

ratio of the kinetic energy (KE) to the internal energy (IE) KE / IE, plotted against 

displacement in Fig. 3.7, was below 5% for all of the three analysis times during most 

of the crushing process. The reason why this ratio was rather high at the beginning of 

the crushing process was because the internal energy was very small due to little 

material deformation. Therefore the middle analysis time 0.02 s was chosen for the 

study here. 
 

 
Fig. 3.6  AE / IE vs displacement curves for three mesh densities. 
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Table 3.2  Mesh convergence test results 

Mesh density Number of elements Normalized Pm 

Coarse 8580 1.118 

Medium 18296 1.029 

Fine 33752 1 
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3.2.2 Results and discussions 

 

Tube model Conventional, serving as the baseline to evaluate the energy absorption 

improvement of the patterned tubes, is first analyzed. It can be seen from Fig. 3.8(a) 

that the tube collapses progressively from the upper end where the geometric trigger is 

placed, and the symmetric mode is eventually obtained. Three lobes are formed in the 

axial direction of the tube. The mean crushing force of the tube is listed in Table 3.4. 

 

When it comes to tube models Patterned1 and Patterned2, numerical simulation results 

show that both collapse in a very similar manner and the octagonal mode is eventually 

attained. The crushing process of Patterned2 is presented in Fig. 3.8(b) as a 

representative. It can be seen that as the tube is being compressed, a diamond shaped 

lobe is formed at each corner of the tube and is gradually folded. Due to the forming of 

 
Fig. 3.7  KE / IE vs displacement curves for three analysis times. 
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Table 3.3  Analysis time convergence test results 

Analysis time Duration (s) Normalized Pm 

Short 0.01 0.970 

Middle 0.02 0.987 

Long 0.04 1 
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the lobes, the cross section in the middle of the tube changes from a square to an 

octagon. Furthermore, comparison of Pm of Conventional and Patterned1 with identical 

material, also listed in Table 3.4, shows a gain of 74.0%, which further confirms the 

superior energy absorption of the octagonal mode.  
 

 
                   

 
 

Table 3.4  Numerical results of the tube models 

Model Material  Pm(kN) Pm increase 

Conventional as-received 12.86 - 

Patterned1 as-received 22.37 74.0% 

Patterned2 annealed 19.37 - 

Modified as-received 22.40 74.2% 

 
       (a) 

 
      (b) 

 
       (c) 

Fig 3.8  Crushing processes of (a) Conventional, (b) Patterned2, and (c) Modified. 
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A similar crushing process is also observed in tube model Modified. As shown in 

Fig. 3.8(c), the octagonal mode is not noticeably affected by the transitional plates at 

the corners. In addition, Pm of Modified, presented in Table 3.4, is also very close to 

that of Patterned1, suggesting that the energy absorption of a tube is mainly determined 

by the failure mode it takes.  

 

 
3.3 Axial Crushing Tests 
 
3.3.1 Conventional square tubes 

 

Two conventional square tube samples C1 to C2 are first analyzed. The crushing 

process of C2 is shown in Fig. 3.9(a). As expected, the symmetric mode is observed. 

Comparing Fig. 3.8(a) with Fig. 3.9(a) reveals that the crushing processes of the 

numerical model and the physical sample agree reasonably well. Two blocks put at the 

ends of the tubes restrict lateral movement of the ends of the physical sample but do 

not change its failure mode. One difference between the numerical simulation and the 

physical test is that the first lobe of the numerical model is formed near the upper end 

whereas that of the physical sample appears near the lower end. The folding of the 

numerical model starts from the upper end because the dent is placed there. The 

location of the first lobe in the physical sample, on the other hand, is affected by 

geometric imperfection and therefore could be near either end. A similar failure mode 

is also found in C1 shown in Fig. 3.10(a). 

 

The force vs displacement curves of C1 and C2 are plotted in Fig. 3.11 and the 

experimental data are listed in Table 3.5. It can be seen that Pm of the physical samples 

agree reasonably well with that of the numerical model. The experimental data being 

slightly higher than the numerical data can be attributed to the weld joints which 

strengthen the corner areas of the physical samples.  
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                (a)                                     (b)                                     (c)                                    (d)                   

Fig. 3.10  Crushed configurations of (a) C1, (b) P2, (c) P3, and (d) M1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.9  Crushing processes of (a) C2, (b) P1, (c) P4, and (d) M2. 
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3.3.2 Patterned square tubes 

 

Two patterned tube samples without heat treatment, P1 and P2, are first analyzed. In 

contrast to the numerical results, neither sample collapses in the octagonal mode. 

Instead, it is seen from Fig. 3.9(b) that as P1 is being crushed, only one corner of the 

tube goes inward as in the case of the octagonal mode, whereas the other three behave 

like those in the symmetric mode. The crushed configuration of P2, Fig. 3.10(b), shows 

Table 3.5  Experimental results of the tube samples 

Model Heat treatment Pm(kN) 

C1 No 14.19 

C2 No 14.09 

P1 No 17.01 

P2 No 16.64 

P3 Yes 10.01 

P4 Yes 11.96 

M1 No 11.94 

M2 No 12.29 

 
Fig. 3.11  Force vs displacement curves of C1 and C2. 
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that none of the corners folds inwards, leading to the symmetric mode. The pyramid 

pattern on P2 appears to make its failure mode somewhat irregular compared with 

those of C1 and C2.  

 

The force vs displacement curves of P1 and P2 are plotted in Fig. 3.12 and the 

experimental data are compiled in Table 3.5. Pm of P1 and P2 are slightly higher than 

those of C1 and C2, but are far below that of the numerical model Patterned1 which 

has identical material with them. This relatively low energy absorption is 

understandable because the desired failure mode fails to be induced. It is shown from 

Table 3.5 that Pm of P1 is the highest among the four samples, although the 

improvement is not substantial due to that the desired mode is generated only at one 

corner. This observation suggests that the octagonal mode, once triggered, does 

enhance the energy absorption capability of a tube.  
 

 
 

Two annealed patterned tube samples P3 and P4 are analyzed subsequently. The axial 

crushing process of P4 is shown in Fig. 3.9(c) and the crushed configuration of P3 in 

Fig. 3.10(c). It can be seen that both samples fail in the symmetric mode. The only 

evident effect of annealing seems to be that it makes the symmetric collapse mode of 

P3 and P4 more regular, probably due to the fact that annealing makes the material 

 
Fig. 3.12  Force vs displacement curves of P1 - P4. 
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properties more uniform. Besides, the force vs displacement curves of P3 and P4 are 

also plotted in Fig. 3.12 and the experimental data are shown in Table 3.5.  Since the 

target failure mode is not triggered, Pm of the two physical samples are found to be 

much lower than that of the numerical model Patterned2 with identical material.  

 
3.3.3 Modified patterned square tubes 

 

Two modified patterned tube samples with transitional plates at the corners, M1 and 

M2, are analyzed. The crushing process of M2 is shown in Fig. 3.9(d) and the crushed 

configuration of M1 in Fig. 3.10(d). The results show that the transitional plates do not 

help to trigger the octagonal mode. The collapse modes taken by the two physical 

samples are on the whole similar to the symmetric mode of conventional square tubes. 

The force vs displacement curves of the two samples are plotted in Fig. 3.13 and the 

experimental data are shown in Table 3.5. An interesting observation from the 

experimental data is that M1 and M2 absorb even less energy that C1, C2, P1, and P2, 

which appears to contradict common sense. It seems that the corners where the weld 

joints are located are responsible for a large portion of the total energy absorption of a 

tube and the transitional plates help to reduce the stiffness of the corners. Because the 

corners of the tubes without transitional plates are much stiffer than those of the tubes 

with transitional plates, more energy can be absorbed by the former.                 

 
 

Fig 3.13  Force vs displacement curves of M1 and M2. 
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3.3.4 Discussions 

 

The axial crushing tests on the patterned tubes present a clearly different picture from 

the numerical simulations. There are several possible reasons to explain the 

discrepancies. The first is that the octagonal mode is very sensitive to geometric and 

local material variations and thus difficult to be induced. From the structural point of 

view, the octagonal mode is actually a high order buckling mode which is unlikely to 

appear unless certain requirements are meet. The introduction of the pyramid pattern 

favours the octagonal mode but other factors existing in the tube samples, e.g., 

geometric imperfection, prevent the mode from appearing. Moreover, the 

manufacturing approach currently adopted to construct the patterned tubes might be 

too crude. As mentioned previously, the corner zones are critical for the forming of the 

octagonal mode. The existence of the weld joints and the local heat effects could 

adversely affect the deformation mode. There are, of course, other ways of 

constructing tube samples of higher quality, e.g., casting, but they are not used here 

due to much higher cost. 

 

 
3.4 Summary 
 

In this chapter an experimental study has been carried out on square tube samples with 

pyramid patterns on the surface, which were reported to have the effect of substantial 

energy absorption increase when subjected to axial compression. Quasi-static axial 

crushing tests on eight tube samples show that in general the octagonal mode predicted 

by the numerical simulations fails to be induced in both the patterned tube samples and 

their modified version. Only a corner of one patterned tube sample exhibits an 

incomplete octagonal mode, which is associated with a small amount of energy 

absorption increase.  

 

Three conclusions can be drawn from the work in this chapter. First of all, it confirms 

that it is possible to apply geometric patterns in the design of thin-walled tubes to alter 
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the failure mode and consequently the energy absorption. Secondly, the octagonal 

mode, if successfully triggered, leads to more energy absorption than the symmetric 

mode typical of conventional square tubes and thus is desirable from the perspective of 

designing an energy absorption device. And finally, the octagonal mode triggered by 

the pyramid pattern is not very stable and highly sensitive to geometric imperfection 

and local material variation. Hence a reliable and consistent performance cannot be 

expected from a tube with pyramid pattern.    

 

The above conclusions are drawn from axial crushing tests of tube samples which are 

not of very high quality. Should a “perfect” tube like the numerical model be made by 

mean of other more refined approaches, e.g., casting, the octagonal mode may be 

obtained. However, the practical value of this ideal tube as an energy absorption device 

is casted into doubt due to high manufacturing cost.   

 

Despite that the application of the pyramid pattern provides a novel way of designing 

thin-walled energy absorption devices, it seems not an ideal solution in itself. In the 

following chapters, we shall introduce a design that can consistently trigger a failure 

mode in a thin-walled tube which is efficient in terms of energy absorption.  
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CHAPTER 4 
THE ORIGAMI TUBE: GEOMETRY AND 

NUMERICAL ANALYSIS 
 

 

 

In this chapter, a type of novel thin-walled energy absorption device known as the 

origami tube, which has pre-manufactured origami pattern on the surface, is to be 

presented. The focus is on geometry and numerical analysis of the origami tube. 

 

Section 4.1 illustrates the theoretical basis of the new design approach through a 

simple analysis of a strut with a pre-folded shape subjected to axial compression. 

Section 4.2 describes the design and geometric analysis of a family of origami patterns. 

In Section 4.3 four groups of origami tubes with a variety of configurations are given 

and the finite element modelling approach to simulate the quasi-static axial crushing of 

the tubes is established. Subsequently the numerical results are presented and discussed 

in Section 4.4. Section 4.5 considers several other factors that are important for the 

origami tube as a practical energy absorption device, i.e., the dependence of the 

response of the origami tube on boundary condition and material, the behaviour of the 

origami tube reinforced by a centre web, the bending capacity and torsion capacity of 

the origami tube, and the performance of the origami tube subjected to dynamic axial 

crushing. Finally a summary in Section 4.6 concludes this chapter.  

 

 
4.1 Theoretical Basis of the New Design Approach 

- 53 - 
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The idea of applying origami patterns to design high-performance energy absorption 

devices is inspired by a well-known fact in structural engineering: structural properties 

depend critically on structural profiles, which is most common in thin-walled 

structures. For instance, structural engineers have for a long time known that a “T” 

section will exhibit different bending stiffness from that of an “I” section. The 

difficulty in the design of thin-walled energy absorption devices, however, lies in that 

the major portion of energy absorption occurs at the post-buckling stage which is 

highly non-linear and thus cannot be effectively manipulated by conventional 

structural design approaches such as variation of cross section profiles.  

 

To overcome this difficulty, the approach taken in this chapter is to pre-fold thin-

walled tubes according to some specific origami patterns so that the buckling and post-

buckling behaviour of a thin-walled tube can be controlled and adjusted. The rationale 

behind this approach is that, if a tube has a pre-folded pattern on it, the structure may 

follow this pattern during a crash. Hence, the failure mode is determined by the pattern 

put on. Alternation of the patterns can then change the failure modes. This approach 

has its theoretical basis, which can be illustrated by a simple analysis of a pin-ended 

strut subjected to axial compression.  

 

Consider a slim strut of length L and bending stiffness EI, and subjected to an axial 

force P. The strut is assumed to be axially incompressible and the axial force is 

assumed to retain its magnitude and direction as the strut deforms. If perfectly straight, 

the strut is expected to deflect into a half sine curve when P reaches the Euler buckling 

load  
 

 
2

E 2

EIP
L


  (4.1) 

 

If, on the other hand, the strut, as shown in Fig. 4.1, is pre-folded into a curve as 

follows 
 

 0 1 2
2sin sinx xy

L L
     (4.2) 
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in which 1  and 2  are the amplitudes of the half sine and the full sine components, 

respectively, with 1 2  to ensure that the full sine component dominates, the 

buckling mode of the strut can be derived though an energy formulation. 
 

 
 

In the linear and small deformation analysis (Timoshenko, 1961), the curvature of the 

strut upon compression is given by  
 

 
22

0
2 2

d yd y
dx dx

  
 

(4.3) 

 

The end shortening of the strut is  
 

 
22

0
0

1
2

L dydy dx
dx dx


        
     

  (4.4) 

 

So the potential energy of the total system can be calculated as 
 

 
2 2222

0 0
2 20 0

1 1
2 2

L Ld y dyd y dyV EI dx P dx
dx dx dx dx

              
       

   (4.5) 

 

Conducting the calculus of variation on V in Eq. (4.5) leads to 
 

 

2 32 3
0 0

2 2 3 3
0 0 0

44 2
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

                       
         

  
    

  


 (4.6) 

The boundary conditions of the strut at 0x   and x L give 
 

  

Fig. 4.1 Configuration of the pre-folded strut. 
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0
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dx dx 

 

   
      

   
 (4.7) 

 

Substituting Eq. (4.7) into Eq. (4.6) gives 
 

 
44 2

0
4 4 20

L d yd y d yV EI P y dx
dx dx dx

 
  

    
  

  (4.8) 

 

from which the equilibrium equation of the strut is attained  
 

 
44 2

0
4 4 2 0d yd y d yEI P

dx dx dx
 
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 (4.9) 

 

Conducting the calculus of variation on V in Eq. (4.8) leads to 
 

 
4 2
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L d y d yV EI P y dx
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   
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     
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  (4.10) 

 

which can be used to determine the stability of the equilibrium path calculated from 

Eq. (4.9).  

 

With all of the basic equations being obtained, we can now derive the deflection curve 

of the strut. First substitute Eq. (4.2) into Eq. (4.9) and solve Eq. (4.9) 
 

 

1 2 3 4

E E
1 2

E E

sin cos

4 2sin sin
4

P Py A x A x A x A
EI EI

P Px x
P P L P P L

  

   

 
 

 (4.11) 

 

in which A1, A2, A3, and A4 are constants of integration to be determined. 
 

 

Applying the boundary conditions in Eq. (4.7) leads to A2 = A3 = A4 = 0 and  
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1 sin 0PA L

EI
  (4.12) 

 

One solution of Eq. (4.12) is   
 

 1 0A    (4.13) 

 

which gives  
 

 

E E
1 2

E E

4 2sin sin
4

P Px xy
P P L P P L

 
  

 
 (4.14) 

 

When EP P  is relatively large, the second term on the right hand side of Eq. (4.14) is 

dominant since 1 2  , and therefore the deflected shape of the strut is essentially a 

full sine curve. When, on the other hand, P is approaching PE, the first term on the 

right hand side Eq. (4.14) becomes very large, resulting in that the deflection curve of 

the strut is practically a half sine curve.  

 

To determine the stability of this equilibrium path, substitute Eq. (4.14) into Eq. (4.10), 

and the following expression can be obtained 
 

 
4 2 2 2

2 2E 1 2
3

E E

256( )( )
2 4

PV x
L P P P P

  
  

 
 (4.15) 

 

When EP P , 2 0V   and therefore Eq. (4.14) represents a stable equilibrium path.  

 

The other solution of Eq. (4.12) is  
 

 P L k
EI


 
 (4.16) 

 

in which k is a positive integer. 
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The smallest value of k is 1, which gives  
 

 EP P   (4.17) 

 

Substituting Eq. (4.17) into Eq. (4.11) leads to that term E
1

E

sinP x
P P L




 dominates 

the right hand side of Eq. (4.11). In other words, the buckled shape of the strut is 

essentially a half sine curve.    

 

Now consider a practical loading scenario of P slowly increasing from zero. The 

analysis presented above indicates that if the objective is to keep the initial full sine 

shape during the collapse, one approach is to make the strut yield when P is well below 

PE. The first term on the right hand side of Eq. (4.14) is negligible under this 

circumstance because 1 2  , so Eq. (4.14) can be rewritten as 
 

 E
m 2

E

4
4

P
P P

 


 (4.18) 

 

where m denotes the maximum deflection of the strut, which occurs at / 4x L . 

 

The deflection to cause material yielding in the strut can be expressed as 
 

 y
y

( )A P I
PAz





  (4.19) 

 

in which A is the cross section area and z is the maximum distance on the section from 

the neutral axis.  

 

Take a square sectional strut with L = 100 mm, I = 1/12 mm4, A = 1 mm2, z = 0.5 mm, 

E = 210 GPa, and y  = 200MPa as an example. m  and y  are plotted against P in 

Fig. 4.2 where 2  varies from 0.50 mm to 1.50 mm. It can be seen that when 2 1.32  , 

m  and y  intersect on the left hand side of EP P , suggesting that plastic 
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deformation develops in the strut before P reaches PE and therefore the initial full sine 

curve is preserved upon the yielding of the strut.  
 

 
 

Two points need to be clarified in Fig. 4.2. First of all, the m  curves are calculated 

based on the assumption that 1 in the first term on the right hand side of Eq. (4.14) is 

very small so that the entire term is neglected. This is true when P is well below PE. 

When P is very close to PE, however, the curves have no practical meaning because 

now the first term on the right hand side of Eq. (4.14) can no longer be neglected. 

Secondly, the portions of the m  curves on the right hand side of PE can be realized if 

P is much larger than PE at the beginning of the loading process. However, this type of 

loading scenario is not possible because the strut will have already buckled to half a 

sine wave when P is close to PE.   

 

Assuming that the material is elastic-perfectly plastic, if the full sine curve is preserved 

until the strut yields, a plastic hinge would appear at / 4x L  or 3 / 4L . Since the 

stiffness of the plastic hinge is much lower than that of the remainder of the strut, 

bending deformation would concentrate in the hinge, which would consequently 

prevent the strut from reversing back to the half sine mode. In this case the strut can be 

seen as two shorter parts joined by a plastic hinge. Since the two parts have different 

lengths, it is impossible for the strut to be completely flattened unless new plastic 

 Fig. 4.2  Deflection vs axial force curves of the pre-folded strut.  
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hinges occur. Therefore, the energy absorption of the pre-folded strut would be higher 

than that of a perfect one which collapses in a half sine curve for the reason that more 

plastic hinges are formed in the former case.   

 

To summarize, it has been demonstrated from the above analysis that it is possible to 

initiate and preserve a new buckling mode in a strut by pre-folding it into a certain 

shape before loading. Applying the same principle to thin-walled tubes, if a pre-folded 

tube can retain the specified failure mode trigged by the origami pattern on the surface, 

high energy absorption can be achieved provided that a correct mode is chosen.  

 

Origami technique is selected here to create efficient failure modes in terms of energy 

absorption because of the following reasons. First of all, origami patterns suit this 

particular application well as the material that is dealt with here is thin. Secondly, most 

origami shapes are developable. Therefore, origami patterns can be manufactured on 

the surface of a tube without much distortion. Finally, mathematical modelling tools 

for origami are available, which facilitate the exploration of various pattern designs. 

 

This proposed approach offers unique advantages because it can substantially improve 

the performance of a thin-walled structure with little additional cost; moreover, the 

failure mode of the structure is predictable and can be made stable, leading to reliable 

structural response.  

 

 
4.2 Design and Geometric Analysis of Origami Patterns  
 

It is known from the review of square tubes in Chapter 2 that three main deformation 

mechanisms exist, i.e., stationary plastic hinge line in both the symmetric and 

extensional modes, travelling plastic hinge line in the symmetric mode, and 

circumferential extension of a large magnitude in the extensional mode. 

Circumferential extension is very efficient in terms of energy absorption but difficult to 

be activated in thin-walled tubes. This is because a sheet of thin metal is more easily 
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bent than stretched. One possible way of inducing large circumferential membrane 

deformation is to pre-manufacture a number of bulges on the surface of a square tube, 

as in the case of corrugations on circular tubes (Singace and El-Sobky, 1997). 

However, such a geometric imperfection would lead to a nondevelopable surface of the 

tube and thus cannot be implemented by an origami pattern out of a flat sheet of 

material. The approach applied here to improve the energy absorption of a square tube 

is to increase the number of travelling plastic hinge lines through a proper geometric 

trigger. Travelling plastic hinge lines are responsible for two-thirds of the total energy 

absorption of a square tube. Therefore if more travelling plastic hinge lines are 

activated in a tube, high energy absorption would be achieved. Since travelling plastic 

hinge lines are associated with the symmetric mode which is circumferentially 

inextensional, it is possible to design an origami pattern with a developable surface to 

implement such a trigger on a square tube. When a square tube that is folded according 

to an origami pattern is crushed, it can be seen as a cylindrical enclosure. Deformation 

mechanisms other than folding along pattern creases must exist in the tube because of 

the bellows conjecture, and therefore travelling plastic hinge lines are possible to be 

activated in theory provided that a proper pattern is designed.  

  

To realize this objective, a basic origami pattern for square tubes, Fig 4.3(a), is 

designed. The solid lines in the figure stand for hill creases and the dashed ones for 

valley creases. If a flat sheet of material is folded along the creases and then the two 

opposite free edges are joined, a square origami tube, Fig. 4.3(b), can be obtained. The 

most important geometric feature of the origami tube that distinguishes it from a 

conventional square tube is the lobe at each corner. The lobe fulfils two main functions: 

first of all, it is a “failure mode inducer” to direct the tube to collapse following the 

pre-manufactured pattern, so that a new failure mode can be formed in the tube; 

secondly, it is also a “geometric imperfection” to reduce the initial buckling force of 

the tube.  
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The basic pattern has several desirable properties. First of all, what is presented in 

Fig. 4.3 can be taken as a module, and longer tubes can be obtained by stacking a 

number of modules axially. Secondly, it can be easily modified to fit tubes with 

rectangular or polygonal cross sections and tapered tubes, all of which are also 

commonly used in practice. And finally, it has developable surface and therefore, the 

origami tube can be made out of a flat sheet of material with little in-plane stretching. 

Hence, the origami tube can be conveniently and accurately manufactured. 
 

There are three independent geometric parameters to define the basic pattern: tube 

width b, corner width c, and module length l. Dihedral angle 2θ is determined by c and 

l through the following equation:  
 

 cos ( 2 1) c
l

                                (4.20) 

 

In addition, geometric constraints on c require that:  

 c b , otherwise the pattern would not be developable. 

 ( 2 1)c l  , since cos 1  .  

When 0c  , the origami tube reduces to a conventional square tube. 
 

The basic pattern can be modified to form rectangular origami tubes. A module of the 

origami pattern for rectangular tubes and the corresponding module of a rectangular 

origami tube are shown in Fig. 4.4. Here the rectangular cross section is defined by its 

length a and width b, with a b . Therefore four geometric parameters, a, b, c, and l, 

 
                                                      (a)                                                                         (b) 
Fig. 4.3  (a) A module of the origami pattern for square tubes, and (b) a module of a square origami 

tube. 
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completely determine the configuration of the pattern. Equation (4.20) can also be 

applied to calculate 2  in this case. 
 

 
 

Modifying the basic pattern to design polygonal tubes can also be realized. Figure 4.5 

is a module of the origami pattern for hexagonal tubes and the corresponding module 

of a hexagonal origami tube. Four geometric parameters, b, c, l, and the number of 

sides N, completely define the geometry of the pattern. The dihedral angle 2θ for an N-

sided tube can be calculated as 
 

 cos tan( )
2

c
N l
                               (4.21) 

 

 
 

There is also no difficulty in designing tapered tubes by slight modification of the basic 

pattern. Two types of tapered tube can be attained. Type I tapered tubes have only two 

opposite sides inclined and the other two straight. Figure 4.6 shows a module of the 

origami pattern for tapered tubes of this type and the corresponding module of a 

 
                                                        (a)                                                                        (b) 
Fig. 4.5  (a) A module of the origami pattern for hexagonal tubes, and (b) a module of a hexagonal 

origami tube. 

 
                                                        (a)                                                                      (b) 

Fig. 4.4  (a) A module of the origami pattern for rectangular tubes, and (b) a module of a 
rectangular origami tube. 
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tapered origami tube of this type. Five geometric parameters determine the geometry 

of the pattern: the lengths of the upper bottom and lower bottom of the trapezoid 

surface a1 and a2, b, c, and l. Type II tapered tubes have four inclined sides. A module 

of the origami pattern for tapered tubes of this type and the corresponding module of a 

tapered origami tube of this type are shown in Fig. 4.7. The geometry of this pattern is 

completely defined by four geometric parameters: a1, a2, c, and l. Note that no closed-

form expression of 2θ can be obtained for either of the two types of tapered origami 

tubes. A detailed geometric analysis of the two types of tapered origami tubes is 

presented in Appendix I. 
 

 
 

 
 

Finally, the number of modules in the axial direction M is another geometric parameter 

if long origami tubes are designed. The geometric design parameters for origami tubes 

with five profiles are summarized in Table 4.1. For each profile, the number of 

geometric design parameters is no more than 6.     

 
                                                  (a)                                                                             (b) 
Fig. 4.7  (a) A module of the origami pattern for type II tapered tubes, and (b) a module of a type II 

tapered origami tube. 

 
                                                  (a)                                                                                (b) 

Fig. 4.6  (a) A module of the origami pattern for type I tapered tubes, and (b) a module of a type I 
tapered origami tube. 



www.manaraa.com

Chapter 4 The Origami Tube: Geometry and Numerical Analysis 

- 65 - 

 

 

 

 
4.3 Design of Origami Tubes and Finite Element Modelling 
 
4.3.1 Design of origami tubes 

 

Four groups of origami tubes with various configurations were designed and analyzed 

to investigate the failure mode and energy absorption properties of the origami tube. 

Group A included one conventional square tube and twenty-nine square origami tubes. 

They were created to investigate the influences of nondimesional geometric parameters 

c / l, l / b, and b / t. The width, height, and wall thickness of the conventional square 

tube A0 were b = 60 mm, H = 120 mm, and t = 1.0 mm. The tube was vertically placed 

and a geometric imperfection in the form of a small dent was introduced near the upper 

end of the tube in order to ensure a stable and progressive collapse mode. All of the 

origami tubes in this group had b and surface area identical to those in A0. Parameters 

c, l, and t varied from one tube to another. The configurations of all of the tubes in 

Group A are listed in Table 4.2.  

 

 

Table 4.1  Summary of the geometric design parameters for origami tubes with five profiles 

Tube profile Geometric parameters 

Square  b, c, l, M 

Rectangular a, b, c, l, M 

Polygonal b, c, l, N, M 

Tapered of type I a1,a2,b, c, l, M 

Tapered of type II a1,a2, c, l, M 



www.manaraa.com

Chapter 4 The Origami Tube: Geometry and Numerical Analysis 

- 66 - 

 

 

Table 4.2  Configurations of tubes in Group A and numerical results 

Model 
c 

(mm) 

l 

(mm) 

2  

(°) 
M 

t 

(mm) 

Pmax 

(kN) 

Pmax 

reduction 

Pm 

(kN) 

Pm 

increase 

A0 - -  - 1.0 40.17 - 11.98 - 

A1_1 30 60 156 2 1.0 25.50 36.5% 18.86 57.4% 

A1_2 24 60 160 2 1.0 26.20 34.8% 19.58 63.4% 

A1_3 20 60 164 2 1.0 26.97 32.9% 20.38 70.1% 

A1_4 15 60 168 2 1.0 26.79 33.3% 19.03 58.9% 

A1_5 10 60 172 2 1.0 33.41 16.8% 18.77 56.7% 

A2_1 20 40 156 3 1.0 25.00 37.8% 19.03 58.9% 

A2_2 16 40 160 3 1.0 25.74 35.9% 18.73 56.3% 

A2_3 13.3 40 164 3 1.0 24.41 39.2% 19.35 61.5% 

A2_4 10 40 168 3 1.0 25.35 36.9% 20.12 68.0% 

A2_5 6.7 40 172 3 1.0 25.37 36.8% 18.77 56.7% 

A3_1 15 30 156 4 1.0 24.54 38.9% 19.49 62.7% 

A3_2 12 30 160 4 1.0 27.80 30.8% 20.93 74.7% 

A3_3 10 30 164 4 1.0 25.02 37.7% 21.15 76.5% 

A3_4 7.5 30 168 4 1.0 24.51 39.0% 20.95 74.9% 

A3_5 5 30 172 4 1.0 26.20 34.8% 19.16 59.9% 

A4_1 12 24 156 5 1.0 26.46 34.1% 21.66 80.8% 

A4_2 9.6 24 160 5 1.0 25.14 37.4% 22.25 85.7% 

A4_3 8 24 164 5 1.0 25.39 36.8% 22.27 85.9% 

A4_4 6 24 168 5 1.0 24.71 38.5% 20.28 69.3% 

A5_1 10 20 156 6 1.0 31.77 20.9% 23.01 92.1% 

A5_2 8 20 160 6 1.0 23.69 41.0% 21.34 78.1% 

A6_1 8.6 17.2 156 7 1.0 27.19 32.3% 20.26 69.1% 

A7_1 30 60 156 2 0.6 - - 7.90 - 

A7_2 30 60 156 2 0.8 - - 12.85 - 

A7_3 30 60 156 2 1.2 - - 26.28 - 

A7_4 30 60 156 2 1.4 - - 35.00 - 

A7_5 30 60 156 2 1.6 - - 45.42 - 

A7_6 30 60 156 2 1.8 - - 56.32 - 

A7_7 30 60 156 2 2.0 - - 67.85 - 
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The other three groups, B, C, and D, were also built in order to examine the effects of 

tube profile. Group B consisted of four rectangular origami tubes with various cross 

section aspect ratio a / b and M, Group C included three origami tubes with triangular, 

pentagonal, and hexagonal cross sections, respectively, and Group D was composed of 

four type I and four type II tapered origami tubes. In addition, the wall thickness of all 

of the tubes in the three groups was chosen as 1.0 mm. The configurations of the tubes 

in the three groups are compiled in Table 4.3. Note that Tables 4.2 and 4.3 also contain 

the peak forces, Pmax, and mean crushing forces, Pm, of the tubes which are obtained by 

the finite element modelling discussed in subsequent sections. 
 

 

 
4.3.2 Finite element modelling 

 

Table 4.3 Configurations of tubes in Groups B, C, D and numerical results 

Model N 
a 

(mm) 

a1 

(mm) 

a2 

(mm) 

b 

(mm) 

c 

(mm) 

l 

(mm) 
M 

Pmax 

(kN) 

Pm 

(kN) 

B1 4 70 - - 50 30 60 2 31.16 16.80 

B2 4 80 - - 40 30 60 2 24.24 13.69 

B3 4 70 - - 50 20 40 3 25.02 18.92 

B4 4 80 - - 40 20 40 3 24.37 19.42 

C1 3 - - - 80 20 40 3 18.00 14.31 

C2 5 - - - 48 20 40 3 32.53 25.08 

C3 6 - - - 40 20 40 3 34.24 26.63 

D1 4 - 50 70 60 30 60 2 25.57 16.79 

D2 4 - 40 80 60 30 60 2 24.30 16.64 

D3 4 - 50 70 60 20 40 3 23.67 18.92 

D4 4 - 40 80 60 20 40 3 23.09 19.23 

D5 4 - 50 70 - 30 60 2 25.55 18.37 

D6 4 - 40 80 - 30 60 2 26.84 16.23 

D7 4 - 50 70 - 20 40 3 24.49 18.39 

D8 4 - 40 80 - 20 40 3 22.55 17.49 
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The quasi-static axial crushing process was simulated using Abaqus/Explicit 

(SIMULIA Corp., USA). The tube was placed between two rigid panels, one of which 

was stationary whereas the other could move to model the crushing scenario. 

Quadrilateral shell elements S4R were used to mesh the tube, supplemented by a few 

triangular elements to avoid excessively small or distorted elements. Self-contact was 

employed to model the contacts among different parts of the tube, and surface-to-

surface contact was defined between the tube and each rigid panel. Friction was also 

considered and the friction coefficient μ was taken as 0.25 (Zhang et al., 2009). The 

lower end of the tube was pinned to the stationary rigid panel which was completely 

fixed in space, and the upper end was coupled to the moving rigid panel by three 

translational degrees of freedom. All of the degrees of freedom of the moving rigid 

panel were constrained except for the translational one in the axial direction of the tube. 

Prescribed downward displacement was assigned to the free degree of freedom of the 

moving rigid panel, and smooth amplitude definition built in Abaqus (SIMULIA Corp., 

USA) was applied to the control the loading rate. The final crushing distance was so 

chosen that the residual height was 35 mm for all of the tubes.  

 

All of the tubes investigated here had two mutually perpendicular vertical planes of 

symmetry except for C1 with a triangular cross section and C2 with a pentagonal one. 

The axial crushing of A1_1 was first analyzed using the whole-tube model and the 

half-tube model, respectively. It was found out that the failure modes obtained from 

both models were symmetric and could hardly be distinguished from each other. In 

addition, their force vs displacement curves, plotted in Fig. 4.8, also matched very well. 

Therefore, the half-tube model was applied to all of the tubes with two planes of 

symmetry and symmetric boundary conditions were assigned to the edges on the plane 

of symmetry, while the whole-tube model was only applied to C1 and C2.  

 

Furthermore, convergence tests with respect to mesh density and analysis time, 

respectively, were also conducted prior to the analysis. It was found out that a global 

mesh size of 1 mm and an analysis time of 0.02s could yield satisfactory results.  
 



www.manaraa.com

Chapter 4 The Origami Tube: Geometry and Numerical Analysis 

- 69 - 

 

 
 

Mild steel, commonly used for tubular energy absorption devices, was the material for 

all of the tubes. The mechanical properties are: 7800  Kg/m3, 210E  GPa, 

y 200  MPa, u 400  MPa, u 20.0%  , 0.3  , and power law exponent n = 0.34. 

The engineering stress vs strain curve is plotted in Fig. 4.9. 
 

 

 

 
4.4 Results and Discussions 

 
 Fig. 4.9  Material engineering stress vs strain curve.  
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 Fig. 4.8  Force vs displacement curves of the whole-tube model and the half-tube model.  
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4.4.1 Axial crushing of conventional square tube 

 

The conventional square tube A0 is analyzed to validate the finite element modelling 

procedure and set a baseline to evaluate the energy absorption enhancement of the 

origami tube. Figure 4.10(a) shows that A0 collapses in the symmetric mode. The force 

vs displacement curve of A0 is plotted in Fig. 4.11. It can be seen that a very high peak 

occurs at the beginning, followed by a number of crests and troughs. The numerical 

value of Pm, shown in Table 4.2, is 11.98 kN. Note that the difference in Pm between 

A0 and tube model Conventional in Chapter 3, both of which have identical geometry, 

comes from different material properties. The theoretical value of Pm, calculated using 

Eq. (2.14) in Chapter 2, is found to be 12.49 kN. It can be seen that a good agreement 

between the numerical value and the theoretical one is obtained, indicating that the 

finite element modelling procedure is appropriate for the current problem. Note that 

the following equation is used to calculate the effective plastic flow stress 0 in Eq. 

(2.14) (Santosa et al., 2000) 
  

 y u
0 1 n

 
 


                 (4.22) 

 

 
(a) 

 
(b) 

 Fig. 4.10  Crushing processes of (a) A0, and (b) A1_1. 
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4.4.2 Axial crushing of square origami tube 

 

Let us take a close look at origami tube A1_1, which is representative of the others. 

The crushing process of A1_1 is shown in Fig. 4.10(b). It can be seen that the tube 

collapses following the pre-manufactured origami pattern on the surface in a 

progressive and stable manner. At the onset of the crushing process, both modules 

buckle simultaneously. As the tube is compressed further, two pairs of inclined plastic 

hinge lines are formed in each lobe and travel away from each other, sweeping across a 

large amount of corner areas. Comparing this collapse mode with the diamond mode of 

circular tubes outlined in Section 2.1.2 of Chapter 2 reveals that the two modes are 

quite similar in shape, with the only main difference that the origami tube is composed 

of flat plates instead of curved shells. Therefore the failure mode of A1_1 is named the 

complete diamond mode in which all of the lobes develop well during the crushing 

process.  
 

The force vs. displacement curve of A1_1 is also plotted in Fig. 4.11. It can be seen 

that the high peak no longer exists because of the origami pattern. As a result, Pmax of 

A1_1 is considerably lower than that of A0. The area below the forced-displacement 

curve of A1_1 which indicates the energy absorption capacity, on the other hand, is 

 
Fig. 4.11  Force vs displacement curves of A0 and A1_1. 
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substantially larger than that of A0. Furthermore, the numerical data in Table 4.2 show 

that compared with those of A0, Pmax of A1_1 is reduced by 36.5% while Pm is 

increased by 57.4%. Therefore it can be concluded that the origami pattern has 

successfully created a thin-walled tube with high SEA and low load uniformity.  

 

The reason why the square origami tube is able to absorb more energy than the 

conventional square tube transpires when comparing the failure modes of the two tubes. 

Figure 4.12 shows a partially crushed square origami tube and a partially crushed 

conventional square tube. It can be seen that two pairs of travelling plastic hinge lines 

exist at each corner of the origami tube as opposed to one pair at each corner of the 

conventional one, leading to increased energy absorption. A detailed analysis of the 

deformation mechanisms of the origami tube will be presented in Chapter 5.  
 

 

 
4.4.3 Effects of geometric parameters 

 

4.4.3.1 Ratios c / l and l / b 

 

It has been shown from the crushing of A1_1 that the complete diamond mode is more 

efficient in terms of energy absorption than the symmetric mode. Therefore a key task 

in the design of the origami tube is to determine the range of pattern geometry that can 

 

                                                 (a)                                                     (b) 
Fig. 4.12  Partially crushed configurations of (a) a square origami tube, and (b) a conventional 

square tube. 
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lead to the complete diamond mode. Among all the designs with which the complete 

diamond mode can be successfully induced, there must be an optimum pattern 

geometry that has maximum energy absorption.  

 

Ratio c / l, which increases with decreasing 2  following Eq. (4.20), is a crucial factor 

to determine whether the complete diamond mode occurs and how the plastic hinge 

lines travel if it does occur. It is not difficult to infer that the pattern would no longer 

be followed if c / l is too small, leading to impairment of the energy absorption of the 

origami tube. On the other hand, a very large c / l can ensure the following of the 

pattern, but it is also undesirable from the perspective of energy absorption as it would 

reduce the area swept by travelling plastic hinge lines. In addition, the amount of 

rotation of stationary plastic hinge lines is also reduced. 

 

Ratio l / b, which is inversely proportional to M for a square origami tube with fixed 

width and surface area, is another important factor that influences the performance of 

the origami tube. It is intuitive that the smaller the ratio l / b, or the more the modules, 

the higher the energy absorption. This is because more modules lead to more 

horizontal plastic hinge lines. However, a very small l / b would not only make the 

tube geometry complicated but could also result in the pattern being overridden during 

the crushing process.  This has been observed in tubes A3_5, A4_4, A5_2, and A6_1, 

which are discussed next.  

 

Twenty-one square origami tubes, i.e., A1_2 - A6_1, are also analyzed. Since all of the 

tubes have identical width and surface area, the results are organized based on 

variations of 2  and M. 

 

Let us start with the failure modes of the tubes. Four tubes, A1_2 - A1_5, with M = 2 

but increasing 2  are first looked into. Numerical results show that when 2 164   , 

the pattern is well followed and the complete diamond mode is successfully attained, 

as can be seen from A1_2 and A1_3 shown in Fig. 4.13(a) and (b), respectively. 

When 2  reaches 168°, however, the crushing process of A1_4, Fig. 4.14, shows that 
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the lobes in the upper module of the tube develop normally at the beginning, and then a 

sort of local folding occurs in the middle part of the tube. This local folding affects the 

subsequent development of the lobes, resulting in obviously different final 

configurations of the two modules. Further increase in 2  leads to a failure mode 

close to that of A1_4, see A1_5 in Fig. 4.13(c). A similar transition in failure mode is 

also observed from A2_1 - A2_5 shown in Fig. 4.13(d) - (h), respectively, all of which 

have M = 3 but with increasing 2 . Although the pattern is still followed in each tube, 

the lobes in the middle module of A2_5 with 2 172    show evident sign of under 

development.  

 

As M reaches 4, like in the case of M = 2, the failure mode still transits from the 

complete diamond mode seen in A3_1 with 2 156   , Fig. 4.13(i), to the mode 

featuring under developed lobes seen in A3_4 with 2 168   , Fig. 4.13(j). But unlike 

in the case of M = 2, it is observed from A3_5 with 2 172   , Fig. 4.13(k), that the 

pattern is no longer followed and the two modules at the bottom of the tube merge. As 

a result, only three folds are formed in A3_5 axially instead of four as the design 

intended. Similar phenomena can also be observed in A4_4, Fig. 4.13(m), and A5_2, 

Fig. 4.13(o). 

 

At M = 7, i.e., A6_1 in Fig. 4.13(p), the pattern is not followed when 2 156   . No 

further reduction in 2  was attempted as the results have been sufficiently clear to 

draw conclusions upon.  

 

Two conclusions can be drawn from the results presented above. 

 For tubes with identical M, the complete diamond mode is usually triggered 

when 2  is relatively small, and then ceases to appear as 2  surpasses a critical 

value where failure modes featuring either under development of the lobes or the 

pattern not being followed occur, see A1_4, A1_5, A2_5, A3_4, and A3_5. Those 

failure modes are called the incomplete diamond mode here, as opposed to the 

complete diamond mode shown in A1_1, A2_1 and A3_1. Note that there is no 
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rigorous method to determine whether the lobes develop “well” or not, and thus 

this is done based mainly on visual inspection.  

 Within 156 2 172    , the pattern is always followed when M ≤ 3. When M 

goes past 3, the phenomenon that the pattern is not followed is observed, occurring 

at a smaller 2  as M increases. Recall that three lobes are formed in the 

conventional square tube A0 axially. Therefore it is suggested that if M of a square 

origami tube is chosen to be identical to the number of lobes formed in the 

corresponding conventional square tube, the complete diamond mode would be 

quite stable. Note that the latter can be estimated by dividing the height of a square 

tube by its folding wavelength which was derived theoretically by Wierzbicki and 

Abramowicz (1983). On the contrary, a larger M would make it difficult for the 

pattern to be followed. The underlying mechanism to explain this observation 

warrants further investigation.  
 

 
 

        

                     (a)                                 (b)                                   (c)                                   (d) 

 
                     (e)                                 (f)                                   (g)                                   (h) 

 
                     (i)                                 (j)                                   (k)                                   (l) 

       
                     (m)                                 (n)                                   (o)                                   (p) 

Fig. 4.13  Crushed configurations of (a) A1_2, (b) A1_3, (c) A1_5, (d) A2_1, (e) A2_2, (f) A2_3, 
(g) A2_4, (h) A2_5, (i) A3_1, (j) A3_4, (k) A3_5, (l) A4_1, (m) A4_4, (n) A5_1, (o) A5_2, and (p) 

A6_1. 
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Now let us focus on the energy absorption properties of the tubes. The numerical data 

of the tubes are summarized in Table 4.2. Pm of each tube is plotted against 2  in 

Fig. 4.15 and the data points associated with identical M are joined by a line. Four 

observations can be made from those results.  
 

 
 

First of all, for tubes with identical M, Pm increases with 2  provided that the 

complete diamond mode is successfully triggered, but the increment is minor. For 

instance, at M = 2, Pm first slightly rises from 2 156    to 2 164  within which the 

complete diamond mode is always obtained. Similar trends can also be observed at M 

= 3, 4, and 5. The only exception is A2_2 which fails in the complete diamond mode 

but has a lower Pm than that of A2_1. The explanation is as follows. On one hand, 

2  determines the corner areas swept by travelling plastic hinge lines and the rotation 

 
Fig. 4.15  Mean crushing force vs dihedral angle curves of A1_1- A6_1. 
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Fig. 4.14  Crushing process of A1_4. 
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angles of stationary plastic hinge lines. The larger 2 , the larger the corner areas and 

the rotation angles, leading to slight increase in Pm. This point can be clearly seen from 

the force vs displacement curves of A1_1, A1_2, and A1_3 plotted in Fig. 4.16. On the 

other hand, the energy absorption of a tube is primarily determined by the failure mode 

it takes. Therefore as long as the failure mode is identical, the energy absorption is 

close.  

 

Secondly, Pmax, in contrast to Pm, shows no obvious correlation to 2  or M. This 

phenomenon is also understandable because after the elimination of the very high 

initial buckling force, the location and magnitude of Pmax show certain degree of 

randomness. Again, the variation of Pmax is not substantial.  
 

 
 

Thirdly, the switch from the complete diamond mode to the incomplete diamond mode, 

such as from A1_3 to A1_4, from A2_4 to A2_5, and from A3_3 to A3_4, is usually 

accompanied by a drop in Pm. This observation again confirms that the new failure 

mode mainly accounts for the energy absorption increase. If the failure mode of a tube 

deviates from the complete diamond mode, the energy absorption also reduces. 

 

 
Fig. 4.16  Force vs displacement curves of A1_1, A1_2, and A1_3. 
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Finally, for tubes with identical 2 , Pm increases with M when M > 2 provided that 

the complete diamond mode is obtained. However, the increment is not large, and Pm 

of most tubes fall into the range of 20 ± 2 kN, indicating that increasing M would not 

substantially improve the energy absorption of the origami tube. The force vs 

displacement curves of A2_1, A3_1, and A4_1, which have identical 2  but 

increasing M, are plotted in Fig. 4.17 as an example. It can be seen that although the 

curve shapes in terms of the number of crests and troughs are different from each other, 

the areas below remain close. A qualitative explanation to this observation involves 

different energy dissipation mechanisms in the collapse process. Two of the main 

sources of energy dissipation are the rotation of stationary plastic hinge lines and the 

sweeping of travelling plastic hinge lines. Although the total length of stationary 

plastic hinge lines increase with M, the corner areas swept by travelling plastic hinge 

lines shrink since the height of each module is reduced, as clearly observed by 

comparing A2_1, A3_1, and A4_1 shown in Fig. 4.13(d), (i), and (l), respectively. The 

energy absorption enhancement contributed by extra stationary plastic hinge lines is 

comparable to the energy absorption reduction due to the shrunk corner areas swept by 

travelling plastic hinge lines, resulting in only minor net energy absorption difference. 
 

 
 

In summary, it is found that for a square origami tube 

 
Fig. 4.17  Force vs displacement curves of A2_1, A3_1, and A4_1. 
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 The critical value of 2  that is just able to trigger the complete diamond mode 

depends on M, and this value decreases with M when M is no less than the number 

of lobes formed in the corresponding conventional square tube axially. In other 

words, a larger amount of pre-folding is needed to induce the complete diamond 

mode as more modules are put on a tube.  

 When the complete diamond mode is triggered, increasing 2  leads to increase in 

Pm provided that M remains the same, and increasing M results in increase in Pm 

provided that 2 is unchanged. Therefore generally less pre-folding and more 

modules help to improve the energy absorption of a square origami tube.  

 In the optimum case, as much as a 92.1% increase in Pm is achieved. 

 

4.4.3.2 Ratio b / t 

 

As mentioned in Chapter 2, ratio b / t is an important factor that influences the failure 

mode of a thin-walled square tube. Different failure modes can be triggered when b / t 

varies, resulting in different energy absorption capabilities.  

 

Seven tubes, A7_1 − A7_7, are analyzed. All of the tubes have identical geometry with 

that of A1_1 except that t varies from 0.6 mm to 2.0 mm, which covers the range of 

b / t practically used in energy absorption devices. Numerical results show that within 

30 / 100b t  , the crushing process of the tube is not noticeably affected by b / t and 

the complete diamond mode is consistently obtained. Thus it seems that the failure 

mode of a properly designed origami tube is independent of b / t within the practical 

range, which is desirable for an energy absorption device. 

 
4.4.4 Effects of tube profile 

 

4.4.4.1 Rectangular cross section 

 

Rectangular tubes are frequently used in practice. Theoretically, the complete diamond 

mode triggered by the pattern does not depend on cross-sectional aspect ratio a / b. 
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However, since inclined plastic hinge lines travel away from tube corners during the 

collapse of a tube, a proper distance between adjacent corners is required in order to 

leave enough space for them to travel and deform material in the corner areas. 

 

Four rectangular origami tubes, B1 − B4, are analyzed. B1 and B2 have identical c / l, 

M, and surface area with those in A1_1, and B3 and B4 have identical c / l, M, and 

surface area with those in A2_1. Numerical results show that the initial buckling of the 

tubes is not noticeably changed by a / b. However, merging of adjacent lobes is 

observed in the subsequent folding of B1 and B2. For instance, it can be seen from the 

crushing process of B2, Fig. 4.18, that after the tube buckles, the travelling plastic 

hinge lines from adjacent corners quickly cross each other, and then the merged lobes 

are gradually folded until the tube is completely crushed. This mode can also be 

categorized as the incomplete diamond mode. In contrast, B3 and B4 show no sign of 

lobe merging and collapse very similarly to A2_1, i.e., in the complete diamond mode. 

 

The numerical data are listed in Table 4.3. It can be seen that Pm of B1 and B2 are 

lower than that of A1_1. The larger l / b, the lower Pm. This phenomenon can be 

attributed to the fact that as l / b reaches a certain value, the distance between adjacent 

corners becomes not large enough for the lobes from the two corners to develop 

independently. As a result, they join and interfere the folding of each other before the 

tube is completely crushed, leading to reduced energy absorption. Pm of B3 and B4, on 

the other hand, are found to be almost identical to that of A2_1, confirming that a / b 

itself has little effect on the energy absorption. 
 

 

 
Fig. 4.18  Crushing process of B2. 
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In summary, it is found that both the failure mode and energy absorption properties of 

a rectangular origami tube are independent of a / b provided that l / b is below a critical 

value to ensure that the distance between adjacent corners is large enough to prevent 

lobe merging. No attempts have been made to find the exact critical value, but it seems 

that a / b has negligible effect when / 1l b  .  
 

4.4.4.2 Polygonal cross section 

 

A polygonal cross section can be seen as a trade-off between a square one and a 

circular one. The energy absorption of conventional polygonal tubes increases with N 

until when N is so large that a polygonal tube virtually becomes a circular one. 
 

 
 

Three origami tubes, C1, C2, and C3, which possess identical c / l, M, and surface area 

with those in A2_1 but have 3, 5, and 6 sides, respectively, are analyzed. The crushing 

process of the triangular origami tube C1 is shown in Fig. 4.19(a). It can be seen that 

the lobe development and the overall failure mode are similar to those in A2_1, with 

 
(a) 

 
(b) 

Fig. 4.19  Crushing processes of (a) C1, and (b) C3. 
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the only exception that 3 lobes rather than 4 are formed in the circumferential direction 

of C1. The pentagonal origami tube C2 also shows a similar complete diamond mode. 

When N reaches 6, the axial crushing process of the hexagonal origami tube C3, 

Fig. 4.19(b), shows that the origami pattern is no longer well followed and the failure 

mode becomes somewhat irregular. This result indicates that a larger magnitude of pre-

folding is needed for the pattern to be followed well, which can be realized by 

selecting a larger c / l.  

 

The force vs displacement curves of C1, C2, and C3 are plotted together with that of 

A2_1 in Fig. 4.20, and the numerical data are given in Table 4.3. As expected, both 

Pmax and Pm increase with N. The irregularity of the failure mode of C3 is also 

reflected in the numerical data: the increase in Pm from C2 to C3 is quite small. This 

result again suggests the strong correlation between failure mode and energy 

absorption.  
 

 
 

4.4.4.3 Tapered shape 

 

Tapered tubes have wide practical applications in the design of thin-walled energy 

absorption devices due to two main reasons: first of all, tapered tubes produce more 

 
 Fig. 4.20  Force vs displacement curves of C1, C2, C3, and A2_1.  
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stable and consistent failure modes than straight ones when subjected to eccentric or 

oblique loads; and secondly, in such applications as automobile frontal bumpers, a 

device is often required to connect two members with different cross sectional 

dimensions, in which situation tapered tubes are an obvious choice.  
 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(e) 

Fig. 4.21  Crushing processes of (a) D1, (b) D3, (c) D5, and (d) D7. 
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Four type I tapered tubes, D1 - D4, and four type II tapered tubes, D5 - D8, are 

analyzed here. D1, D2, D5, and D6 have identical c / l and M with those in A1_1, and 

D3, D4, D7, and D8 have identical c / l and M with those in A2_1. 
 

For type I tapered tubes, the axial crushing process of D1 is first presented in 

Fig 4.21(a). It can be observed that the pattern is well followed during the crushing 

process, indicating that the failure mode is not significantly changed by the tapered 

shape. However, the upper module of the tube shows some sign of lobe merging due to 

the relative large value of l / a1 which is equivalent to l / b in straight tubes. A similar 

phenomenon is also observed from D2 in Fig. 4.22(a). When l is reduced from 60 mm 

to 40 mm, it can be seen from the crushing process of D3, Fig. 4.21(b), that no lobe 

merging occurs any more, leading to the complete diamond mode. D4, Fig. 4.22(b), 

also shows the same failure mode. These results once more indicate that an appropriate 

distance between adjacent corners is needed for the complete diamond mode to be 

formed.  

 

The force vs displacement curves of D1, D2, D3, and D4 are plotted in Fig. 4.23, and 

the numerical data are compiled in Table 4.3. Three observations can be made from the 

results. First of all, the forces of D1 and D2 which have different values of a1 / a2 

match quite well and so do those of D3 and D4, indicating that the energy absorption 

of type I tapered tubes is no very sensitive to the degree of tapering within the range 

studied here. Secondly, Pm of D3 and D4 are larger than those of D1 and D2, further 

confirming that lobe merging results in reduced energy absorption. And finally, Pmax of 

D3 and D4 without lobe merging are very close to that of A2_1, and the differences in 

their Pm are also negligible. Therefore it can be concluded that type I tapered shape 

  
             (a)                             (b)                            (c)                           (d)                           (e)       

Fig. 4.22  Crushed configurations of (a) D2, (b) D4, (c) D5, (d) D6, and (e) D8. 



www.manaraa.com

Chapter 4 The Origami Tube: Geometry and Numerical Analysis 

- 85 - 

 

does not significantly affect the energy absorption of the origami tube provided that a 

proper pattern geometry is selected. 
 

 
 

For type II tapered tubes, the axial crushing process of D5 is first shown in Fig. 4.21(c). 

It can be seen that the lobes in the upper module develop at the early stage of crushing. 

Subsequently tube inversion is generated and the folded upper module goes inside the 

lower one, which hinders the development of the lobes in the lower one. The tube 

inversion deformation can be seen more clearly from the sectional view of the crushed 

configuration of D5 shown in Fig. 4.22(c). As a result, a hybrid failure mode 

combining the complete diamond mode and tube inversion is finally attained. When M 

increases from 2 to 3, the crushing process of D7, Fig. 4.21(d), shows that tube 

inversion is eliminated and the complete diamond mode is eventually achieved. A 

similar failure mode switch is also observed by comparing D6 and D8 presented in 

Fig. 4.22(d) and (e), respectively.  

 

The force vs displacement curves of D5, D6, D7, and D8 are plotted in Fig. 4.24. It can 

be seen that D5 and D6 have relatively smooth curves compared with those of D7 and 

D8, which is due to the tube inversion deformation in D5 and D6. The numerical 

results of the four tubes are presented in Table 4.3. Comparison of Pm of D5 and D7 

 
Fig. 4.23  Force vs displacement curves of D1 - D4. 
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indicates that the energy absorption capabilities of the hybrid failure mode and the 

complete diamond mode are very close. This conclusion is further supported by 

comparing Pm of D6 and D8. Pm of D5 and D7 are higher than those of D6 and D8, 

suggesting that the energy absorption of type II tapered tubes, unlike type I tubes, 

increases with a1 / a2 within the range studied here. In other words, the less tapered a 

tube is, the more energy it can absorb.  
 

 

 

 
4.5 Other Factors Influencing the Performance of the Origami 

Tube 
 
4.5.1 Boundary condition 

 

Pinned-pinned boundary conditions have been considered in Section 4.4. However, 

real world thin-walled energy absorption devices could be subjected to various 

boundary conditions depending on the way they are installed. Figure 4.25 shows two 

automobile crashcans. For the Range Rover crashcan in Fig. 4.25(a), two opposite 

sides of the lower end are connected to the mounting plate through spot-welding, and 

two opposite sides of the upper end are bolted to a bumper beam (not included in the 

 
Fig. 4.24  Force vs displacement curves of D5 - D8. 
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figure). This can be treated as pinned-pinned boundary conditions. For the BMW 

crashcan in Fig. 4.25(b), the lower end is welded to the mounting plate and the upper 

end to the bumper beam. This can be treated as fixed-fixed boundary conditions. In 

addition, crashcans are usually attached to the longitudinal members of a vehicle which 

could also deform upon impact.  
 

 
 

To investigate the effect of boundary condition on the performance of the origami tube, 

A1_1 was reanalyzed under three types of boundary conditions: free-free, fixed-fixed, 

and pinned on the end of impact and rigidly attached to a supporting square tube on the 

other end. The geometry of the supporting tube was chosen as b = 60 mm, 

H = 120 mm, and t = 2.0 mm. Note that the supporting tube was designed to be stiffer 

than A1_1 to ensure that A1_1 would fail first.  

 

The crushed configurations of A1_1 subjected to the three types of boundary 

conditions are presented in Fig. 4.26. It can be seen that the complete diamond mode is 

invariably triggered irrespective of boundary condition. The force vs displacement 

curves generated under the three types of boundary conditions are plotted in Fig. 4.27 

together with that under the pinned-pinned boundary conditions obtained in Section 4.4. 

All of the curves are found to have similar shape and comparable force level. 

Therefore the complete diamond mode is not sensitive to boundary condition. In other 

words, the origami tube can perform well under practical boundary conditions. 

 

                                             (a)                                                                     (b) 
Fig. 4.25  (a) Range Rover crashcan, and (b) BMW crashcan. 
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4.5.2 Material mechanical properties 

 

The concept of the origami tube presented in this chapter is purely structural, so we 

expect that the complete diamond mode can be triggered in a tube made of any ductile 

material. To further confirm the independence of the behaviour of the origami tube 

from material mechanical properties, another two commonly used materials for thin-

walled energy absorption devices, i.e., high strength steel and aluminium alloy, were 

 
Fig. 4.27  Force vs displacement curves of A1_1 subjected to different boundary conditions. 
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                                (a)                                            (b)                                          (c)   
Fig. 4.26  Crushed configurations of A1_1 subjected to different boundary conditions. (a) Free, (b) 

fixed, and (c) with supporter.  
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respectively assigned to A0 and A1_1 and the axial crushing analysis was re-conducted. 

The mechanical properties of the two materials are listed in Table 4.4, and the 

engineering stress vs strain curves are plotted in Fig. 4.28.  
 

 

 
 

The crushed configurations of A1_1 made of high strength steel and aluminium alloy, 

respectively, are presented in Fig. 4.29. It can be seen that the complete diamond mode 

is successfully triggered in both cases. These results indicate that the complete 

diamond mode is also not sensitive to material mechanical properties, further 

demonstrating the ability of the origami pattern to trigger the complete diamond mode 

in a stable manner.  
 

 

  
                                                  (a)                                          (b)       
Fig. 4.29 Crushed configurations of A1_1 made of (a) high strength steel, and (b) aluminium alloy. 

 
 Fig. 4.28  Engineering stress vs strain curves of high strength steel and aluminium alloy.  
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Table 4.4  Mechanical properties of high strength steel and aluminium alloy 

Material   (Kg/m3) E (GPa)   y  (MPa) u  (MPa) u  

High strength steel 7800 210 0.3 406 819.6 17.6% 

Aluminium alloy 2700 68.2 0.3 80 173 17.3% 
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The force vs displacement curves of A0 and A1_1 made of high strength steel are 

plotted in Fig. 4.30, and those of A0 and A1_1 made of aluminium alloy are plotted in 

Fig. 4.31. The numerical data are summarized in Table 4.5. As expected, substantial 

Pmax reduction and Pm increase are achieved in both cases, indicating that the origami 

pattern is applicable to tubes with other ductile materials.  
 

 
 

 
 

 
Fig. 4.31  Force vs displacement curves of A0 and A1_1 made of aluminium alloy. 
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Fig. 4.30  Force vs displacement curves of A0 and A1_1 made of high strength steel. 
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4.5.3 Reinforcement 

 

Multi-cell cross sections have also been applied in the design of thin-walled energy 

absorption devices, among which double-cell cross sections, i.e., box sections 

reinforced by centre webs, are occasionally adopted in practice when single cell cross 

sections are not able to meet certain design objectives. To study the effect of 

reinforcement on the failure mode and energy absorption of the origami tube, tubes 

A0_R and A3_1_R, obtained by reinforcing A0 and A3_1 with centre webs, 

respectively, were built and axially crushed. The centre web of A0_R was a straight 

plate, whereas that of A3_1_R was a corrugated plate like the sides of A3_1. The 

thickness of both centre webs was chosen as 1.0 mm.  

 

The crushed configurations of the two tubes are shown in Fig. 4.32. Due to the 

introduction of the centre web, the folding wavelength of A0_R is significantly 

reduced compared with that of A0. As a result, four lobes are formed axially. For 

A3_1_R, on the other hand, the pattern is still well followed as in the case of A3_1 

without being noticeably affected by the centre web, and the complete diamond mode 

is obtained.  

 

 
                                          (a)                                                                     (b) 

Fig. 4.32  Crushed configurations of (a) A0_R, and (b) A3_1_R.  

Table 4.5  Numerical results of A0 and A1_1 made of high strength steel and aluminium alloy  

Material Model Pmax  (kN) Pmax reduction Pm (kN) Pm increase 

High strength steel  
A0 80.90 - 25.94 - 

A1_1 62.24 23.1% 37.38 44.1% 

Aluminium alloy 
A0 16.33 - 5.45 - 

A1_1 13.46 17.6% 8.14 49.4% 
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The force vs displacement curves of the two tubes are plotted in Fig. 4.33 and the 

numerical results are summarized in Table 4.6. A substantial reduction in Pmax is still 

obtained for A3_1_R compared with that of A0_R. Pm increase of A3_1_R, on the 

other hand, is not as pronounced as in the case of no centre web, with 26.0% being 

achieved. The reason for the relatively low energy absorption improvement can be 

explained as follows. The centre web of A0_R helps to increase the energy absorption 

in two ways. First, it absorbs energy through its own plastic deformation. Second, it 

reduces the folding wavelength so that the tube can absorb more energy through axial 

folding. The centre web of A3_1_R, however, does not noticeably change the failure 

mode, and thus contributes to the total energy absorption mainly through plastic 

deformation in itself. As a result, the centre web of A0_R is more effective at 

improving the energy absorption of the whole structure, leading to reduced energy 

absorption difference between the two tubes. Despite that, the advantage of the origami 

tube is still evident, indicating that it is also worthwhile to apply the origami pattern on 

tubes with centre webs. 
 

 

 
 Fig. 4.33  Force vs displacement curves of A0_R and A3_1_R.  
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4.5.4 Bending capacity and torsion capacity  

 

In addition to high energy absorption under axial compression, a good energy 

absorption device also needs to possess reasonable bending capacity and torsion 

capacity because of two reasons. First of all, some devices not only dissipate kinetic 

energy in the event of a collision but also function as structural components in normal 

working conditions, so they are required to be reasonably stiff to ensure sound all-

around performance of the whole structure. Secondly, the real loading applied to a 

device in an impact event is rarely a perfect axial compression. In most cases it is a 

combination of compression, bending, and sometime torsion. Therefore if a device is 

not rigid enough to resist bending and torsion, the axial failure mode could be severely 

distorted, leading to weakened energy absorption capability.  

 

When subjected to large deformation, the origami tube is expected to have lower 

bending capacity and torsion capacity than those of “perfect” conventional tubes 

without any form of pre-manufactured imperfection because of the origami pattern on 

the surface of the origami tube which replaces straight corners with lobes. However, 

“perfect” conventional tubes are rarely used as energy absorption devices due to the 

excessively high initial buckling force, so it is more meaningful to compare the 

origami tube with “imperfect” conventional tubes which are intentionally weakened to 

reduce the initial buckling force. To evaluate the bending capacity and torsion capacity 

of the origami tube, six square origami tubes, A1_1, A1_3, A2_1, A2_3, A3_1, and 

A3_3, one “perfect” and one “imperfect” conventional square tubes were bent and 

twisted, respectively. Both conventional tubes had identical geometry with that of A0, 

and dents were introduced on the surface of the “imperfect” one. The configuration of 

the “imperfect” tube is shown in Fig. 4.34. 

Table 4.6  Numerical results of A0_R and A3_1_R 

Model Pmax (kN) Pmax reduction Pm (kN) Pm increase 

A0_R  57.23 - 24.07 - 

A3_1_R 35.88 37.3% 30.32 26.0% 
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Abaqus/Standard (SIMULIA Corp., USA) was employed to conduct the static 

numerical simulations. In the bending analysis, only a half of each tube shown in 

Fig. 4.35(a) was built due to symmetry. One end of the tube was tied to a stationary 

rigid panel by six degrees of freedom and the other to a moving one. The stationary 

rigid panel was completely fixed in space. Only the translational degree of freedom of 

the moving rigid panel in y direction was not constrained, to which a displacement of 

2 mm in negative y direction was applied. 
 

 
 

In the twisting analysis, the whole tube shown in Fig. 4.35(b) was modelled in each 

case. The two ends of the tube were tied to a stationary rigid panel and a moving one, 

respectively, by six degrees of freedom. The stationary rigid panel was completely 

fixed, whereas all of the degrees of freedom of the moving one were constrained 

 
                                        (a)                                                                         (b) 

Fig. 4.35  Loading scenarios of (a) bending analysis, and (b) twisting analysis. 

 
Fig. 4.34  The “imperfect” square tube. 
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except for the rotational degree of freedom about z axis.  A rotation of 1° about z axis 

was assigned to the free degree of freedom of the moving rigid panel.  

 

The bending capacity of the tubes is first evaluated. The force vs displacement curves 

are plotted in Fig. 4.36. Unsurprisingly, the curve of the “perfect” tube is the highest 

among all of the tubes. The curves of the six origami tubes stay close to that of the 

“imperfect” tube, indicating that a properly designed origami tube can offer reasonable 

bending capacity.    
 

If the origami tubes are sorted according to the force in ascending order, the sequence 

listed in Table 4.7 can be obtained. It is observed that the bending capacity of a square 

origami tube is affected by two parameters: 

 c / l : the bending capacity increases with reducing c / l.   

 l / b: the bending capacity increases with reducing l / b. 
 

 

 

 

Fig. 4.36  Force vs displacement curves of the tubes under bending. 
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Subsequently the torsion capacity of the tubes is assessed. The torque vs rotation 

curves are plotted in Fig. 4.37. It can be seen that the origami tubes have relatively low 

torsion capacity, with the curves of four of them staying below that of the “imperfect” 

tube. So special attention should be paid to the design if an origami tube is required to 

resist large torsion. Sorting the origami tubes according to the torque in ascending 

order, the sequence also shown in Table 4.7 can be obtained. Two parameters are 

found to influence the torsion capacity of a square origami tube: 

 c: the torsion capacity increases with reducing c.  

 l / b: the torsional capacity increases with increasing l / b. 

 

 

Fig. 4.37  Torque vs rotation curves of the tubes under twisting. 
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Table 4.7  Ranking of the bending capacity and torsion capacity of the origami tubes 

Model c (mm) l (mm) c / l l / b Bending Twisting 

A1_1 30 60 0.5 1 1st 1st 

A1_3 20 60 0.33 1 4th 3rd 

A2_1 20 40 0.5 0.67 2ed 2ed 

A2_3 13.3 40 0.33 0.67 5th 5th 

A3_1 15 30 0.5 0.5 3rd 4th 

A3_3 10 30 0.33 0.5 6th 6th 
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4.5.5 Dynamic axial crushing  

 

The response of an energy absorption device subjected to dynamic loading is crucial 

for the device to perform in a realistic impact event. In order to investigate dynamic 

effects on the performance of the origami tube, a conventional tube, Cc, and an origami 

one, Oc, were built. Both tubes had the structural profile of a type I tapered shape and 

identical surface area. The configurations of the tubes are listed in Table 4.8.  
 

 
 

It was mentioned in Chapter 2 that the dynamic response of a thin-walled tube was 

mainly affected by inertia and material strain rate sensitivity. To comprehensively 

evaluate the effects of each factor and a combination of the two, respectively, the tubes 

were crushed under four conditions. The material density, material strain rate 

sensitivity, loading rate, and target factors to be studied in each condition are listed in 

Table 4.9.   
 

 
 

The material model and finite element simulation approach used in Section 4.3.2 were 

adopted for the axial crushing analysis here, with the following changes being made.  

 Fixed-fixed boundary conditions were applied to each tube.  

Table 4.9  Axial crushing conditions for the tubes  

Condition Density 
Strain rate 

sensitivity 
Loading rate Target factors 

I original No quasi-static - 

II original No 20 m/s inertia  

III 1 / 1000 of 
original 

Yes 20 m/s strain rate sensitivity 

IV original Yes 20 m/s inertia and strain 
rate sensitivity 

Table 4.8  Configurations of the tubes 

Model a1 (mm) a2 (mm) b (mm) c (mm) l (mm) M t (mm) 

Cc 60 90 60 - - - 2.0 

Oc 60 90 60 22.5 45 4 2.0 
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 Geometric imperfection in terms of a linear combination of the first eight buckling 

modes was introduced on Cc to ensure a stable and progressive crushing.  

 Material strain rate sensitivity was considered through the Cowper-Symonds 

equation (2.19) in Chapter 2, with material constants Cr and qr being chosen as 

6844 s-1 and 3.91, respectively (Abramowicz and Jones, 1984a). 

 

The crushed configurations of the tubes under four conditions are shown in Fig. 4.38. 

Cc fails in the typical symmetric mode under conditions I - III, but in a mode exhibiting 

both symmetric folding and circumferential extension under condition IV see 

Fig. 4.38(a). These results indicate that the combined effects of inertia and strain rate 

sensitivity associated with high speed impacts can lead to a change in failure mode for 

conventional tubes. Oc, on the other hand, demonstrates the complete diamond mode 

under all four conditions, see Fig. 4.38(b). This consistent and predictable response of 

the origami tube can be attributed to the effectiveness of the origami pattern at 

controlling the axial collapse route of the tube, which outweighs inertia and strain rate 

effects.  
 

 
 

The force vs. displacement curves of Cc under all four conditions and those of Oc are 

plotted in Fig. 4.39(a) and (b), respectively. The numerical results are presented in 

Table 4.10. Three observations can be made from the results.  

 

  
(a) 

 

(b) 
Fig. 4.38  Crushed configurations of (a) Cc, and (b) Oc under conditions I - IV (from left to right). 
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Table 4.10  Numerical results of the tubes under four conditions 

Condition 

Cc Oc 

Pmax 

(kN) 

Pm 

(kN) 

Pmax 

(kN) 

Pmax 

reduction 

Pm 

(kN) 

Pm 

increase 

I 110.30 50.77 93.55 15.2% 76.73 51.1% 

II 152.03 64.47 122.98 19.1% 79.36 23.1% 

III 148.00 66.74 144.38 2.4% 110.49 65.6% 

IV 263.30 81.86 272.27 -3.4% 103.37 26.3% 

 
(a) 

 
(b) 

 Fig. 4.39  Force vs displacement curves of (a) Cc, and (b) Oc under four conditions.  
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First of all, both Pmax and Pm of Cc under condition II are noticeably higher than those 

under condition I. By contrast, only Pmax of Oc under condition II is significantly 

increased in comparison with that under condition I, whereas Pm of Oc under both 

conditions are quite close to each other. This phenomenon can be explained as follows. 

Inertia effects tend to preserve the unbuckled shape of a tube when subjected to a high 

speed impact. For Cc, the inertia effects delay initiation of local folding, leading to a 

prolonged high force at the beginning of the crushing process which can be seen from 

Fig. 4.39(a). As a result, both Pmax and Pm of Cc increase considerably. For Oc, on the 

other hand, the origami pattern works as a type of geometric perturbation which 

favours immediate strain localization. The effect of the origami pattern outweighs the 

inertia effects, and therefore local folding happens immediately after loading, resulting 

in a sharp drop in force which can be seen from Fig. 4.39(b). After the force drop, the 

inertia effects become insignificant, and therefore the forces under the two conditions 

nearly overlap. As a result, only Pmax of Oc is raised considerably whereas Pm remains 

almost the same.  

 

Secondly, both Pmax and Pm of Cc under condition III are noticeably higher than those 

under condition I, and a similar result is also obtained for Oc. This observation 

indicates that strain rate sensitivity has similar effects on both types of tubes. The 

reason is that strain rate effects are associated with plastic strain rate, and are therefore 

obvious during the entire crushing process.  

 

Finally, when both inertia and strain rate sensitivity are considered, as in the case of 

condition IV, Pmax of the two tubes are quite close. Pm of Oc, on the other hand, is still 

considerably higher than that of Cc, which demonstrates the superior energy absorption 

capability of the origami tube. 

 

 
4.6 Summary 
 



www.manaraa.com

Chapter 4 The Origami Tube: Geometry and Numerical Analysis 

- 101 - 

 

A family of novel origami patterns have been proposed to design a type of high-

performance energy absorption device known as the origami tube in this chapter. The 

origami pattern pre-manufactured on the surface of the tube has the dual functions of a 

geometric imperfection to reduce the initial buckling force and of a mode inducer to 

trigger a failure mode that is more efficient in terms of absorbing energy in a collision. 

Hence the origami tube is able to meet the twin design objectives of high SEA and low 

load uniformity.  

 

An extensive numerical study has been conducted on four groups of origami tubes with 

various configurations to investigate their failure modes and energy absorption 

properties when subjected quasi-static axial crushing. The results show that, a new 

failure mode, referred to as the complete diamond mode, which resembles the diamond 

mode typical of thin-walled circular tubes, can be successfully triggered in square, 

rectangular, polygonal, and tapered origami tubes over a wide range of pattern 

geometries. Peak force reduction by about 30% and mean crushing force increase by 

over 50% are consistently achieved for the origami tube compared with those of a 

conventional square tube with identical surface area and wall thickness. 

 

Compared with existing thin-walled tube designs, the origami tube has several 

important advantages. First of all, both high SEA and low load uniformity are unified in 

a single tube design. This desirable result is achieved due to the new design approach. 

In a typical design approach if the objective is to increase the energy absorption of a 

tube, the tube is strengthened in some way, e.g., by replacing a single-cell cross section 

with a cellular cross section or by introducing circumferential reinforcement along the 

tube. The design approach applied here, however, is to increase the energy absorption 

of a tube through replacing its original failure mode with a new mode by means of 

application of origami patterns. It is now possible to increase the energy absorption of a 

tube by first weakening it, since any perturbation of the initially straight walls of a 

conventional square tube will reduce its peak loading at the beginning of the crushing. 

As a result, the problem of high initial buckling force is solved automatically. It should 

be mentioned that square tubes with pyramid patterns on the surface are also able to 
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achieve both low initial buckling force and high energy absorption simultaneously (Ma, 

2008). But the difficulty is how to consistently trigger the octagonal mode, as 

mentioned in Chapter 3. Secondly, the geometry of the origami pattern can be flexibly 

adjusted to ensure that the complete diamond mode is triggered in a stable manner. It 

has been shown in Section 4.4 that c / l is crucial in determining the failure mode of the 

origami tube. As long as c / l is sufficiently large, the complete diamond mode is bound 

to occur. Of course, an excessively large c / l would lead to reduction in the energy 

absorption efficiency. Therefore an optimum value needs to be determined to maximize 

energy absorption efficiency. Note that one of the shortcomings of the pyramid pattern 

is that the geometry of the pattern cannot be easily adjusted to ensure the forming of the 

octagonal mode. Thirdly, the origami pattern is developable, meaning that the origami 

tube can be made out of a flat sheet of material with little in-plane stretching. This 

property thus provides a convenient and accurate manufacturing technique to construct 

the origami tube without substantial cost increment. By contrast, the commonly applied 

dents on existing thin-walled energy absorption devices unavoidably introduce material 

stretching during the manufacturing process. The same is true for the pyramid pattern.  

 

In addition to the energy absorption performance, some other factors, crucial for the 

origami tube to be used as an energy absorption device, have also been investigated 

through a series of case studies, from which five conclusions can be drawn: 

 The complete diamond mode is quite robust under a variety of practical boundary 

conditions, indicating that the origami tube can perform well under realistic 

scenarios.  

 The performance of the origami tube shows no obvious dependence on material 

mechanical properties provided that ductile material is used. Therefore the material 

of the origami tube can be flexibly selected based on practical requirements.  

 Reinforcing the origami tube with a centre web can still preserve its superior energy 

absorption performance.  

 As long as a proper pattern geometry is chosen, the bending and torsional 

performances of an origami tube become comparable to those tubes with pre-
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manufactured dents on the surface. In other words, the origami tube integrates well 

under both bending and twisting.  

 The response of the origami tube subjected to dynamic axial crushing is consistent 

and predictable. The energy absorption of the origami tube is also superior to that of 

conventional tubes.  

 

Various properties that influence the performance of the origami tube as a practical 

energy absorption device have been discussed in this chapter when it is subjected to 

axial compression. However, the tube often is subjected to off-axial or inclined loading 

in practice. There are two ways to consider the real world scenario. The first is to treat 

the origami tube as a stand-alone structure subjected to an off-axial impact. An oblique 

impact load can be applied to the origami tube, and the focus is to investigate in what 

range of impact angle the complete diamond mode can be maintained. The second is to 

integrate the origami tube into a structural system such as an automobile frontal 

bumper. The behaviour of the origami tube is then obtained from the impact analysis 

of the bumper. The second is chosen in the dissertation, and the results will be 

presented in Chapter 7.  
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CHAPTER 5 
THE ORIGAMI TUBE: THEORETICAL  

ANALYSIS AND EXPERIMENTS 
 

 

 

The superior energy absorption properties of the origami tube were clearly 

demonstrated via an extensive numerical study in Chapter 4. In this chapter theoretical 

and experimental studies on the origami tube will be presented.  

 

In Section 5.1 a basic folding element is proposed to describe the complete diamond 

mode and a theoretical formula is derived to estimate the mean crushing force of a 

square origami tube with specified geometry and material properties. Section 5.2 

presents quasi-static axial crushing tests on several square origami tube samples. Two 

manufacturing approaches are developed to construct tube samples with different wall 

thicknesses. Numerical simulations of the test samples are also conducted and the 

numerical results are compared with the experimental data. Finally a summary is given 

in Section 5.3.  

 

 
5.1 Theoretical Prediction of the Mean Crushing Force  
 

It was shown in Chapter 4 that the origami patterns could trigger the complete diamond 

mode in origami tubes with a wide range of pattern geometries and tube profiles. From 

the viewpoint of design, it would be desirable to have a simple mathematical formula 

to estimate the energy absorption of an origami tube with specified geometry and 

- 104 - 
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material, or to roughly determine the size of an origami tube if the material used to 

construct the tube is chosen and the energy required to be absorbed is known. To this 

end, a theoretical analysis on the crushing of the origami tube is conducted. Square 

origami tubes which have the smallest number of independent geometric parameters 

are selected for the study. The three-step procedure outlined in Chapter 2 is adopted to 

derive the mean crushing force.  

 
5.1.1 Basic folding element 

 

Before building a basic folding element, let us start with a detailed analysis of the 

folding process of square origami tubes. Tube model A2_2 in Chapter 4, consisting of 

three modules which are referred to as module I – III from top to bottom, is selected as 

an example. The front and side views of the crushing process of a quarter of A2_2, 

each of which includes eight typical configurations, are shown in Fig. 5.1(a) and (b), 

respectively, and the corresponding equivalent plastic strain (PEEQ) contour at each 

configuration is plotted in Fig. 5.1(c). At the beginning of the crushing process, 

module II first starts to fold. The second configuration in Fig. 5.1(a) indicates that two 

pairs of travelling plastic hinge lines are formed along the four sides of the lobe in 

module II. This observation is also reflected in the second PEEQ contour in Fig. 5.1(c), 

which shows that large plastic deformation occurs along the four sides. Subsequently, 

two pairs of inclined stationary plastic hinge lines, as can be observed from the third 

configuration in Fig. 5.1(a), appear in the lobe area of module II. The third PEEQ 

contour in Fig. 5.1(c) also shows that large plastic strain takes place at the locations of 

those hinges. In addition, two horizontal stationary plastic hinge lines are formed near 

the upper and lower ends of module II, respectively. Those hinges are not exactly 

along the ends of module II but at locations inside the module, which can be seen from 

the third configurations in Fig. 5.1(b) and the third PEEQ contour in Fig. 5.1(c). As a 

result, module II is not completely flattened but has a residual height. The horizontal 

stationary plastic hinge line in the middle of module II, which is initiated at the 

beginning of the crushing process, is completely folded at this point. As the tube is 

compressed further, modules I and III are folded one after another in a similar manner. 
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Another observation that can be made from the PEEQ contours in Fig. 5.1(c) is that 

large plastic deformation is limited to the area swept by the travelling plastic hinge 

lines and the neighbourhood of the stationary plastic hinge lines, whereas the 

remaining panels undergo very small plastic deformation. This observation indicates 

that no circumferential membrane deformation of a large magnitude is activated in the 

tube, and therefore the deformation mode can be practically treated as 

circumferentially inextensible.  
 

 
 

Now consider one quarter of a module of a square origami tube with tube width b, 

module length l, and corner width c as a basic folding element. Based on the numerical 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.1  Crushing process of a quarter of A2_2. (a) Front view, (b) side view, and (c) PEEQ 
contour. 
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results presented in Chapter 4, the crushing process of the basic folding element can be 

approximately divided into two stages.  

 

At stage I, CA1, CB1, EA1, and EB1, highlighted by thick lines in Fig. 5.2(a), become 

travelling plastic hinge lines and move away from the corner as the element is being 

crushed until they reach CA, CB, EA, and EB, respectively. The value of   measured 

from the numerical models is around / 4 . For instance, the angles formed in the three 

modules of A2_2 are approximately 45°, 47°, and 45°, respectively. Meanwhile, a 

circumferential stationary plastic hinge line, also highlighted by thick lines, is formed 

in the middle of the element and bent as the travelling plastic hinge lines propagate to 

keep the element geometrically compatible. The configuration of the element at the end 

of Stage I is shown in Fig. 5.2(b). Note that the element is only slightly shortened at 

this time.  
 

 
 

Subsequently Stage II starts, during which the element is substantially shortened to its 

final configuration. If the entire element were to be perfectly folded to flat, the four 

 
                                         (a)                                                                       (b)                                              

 

                                         (c)                                                                     (d) 
Fig. 5.2  Crushing process of the basic folding element. (a) perspective view of the initial 

configuration, (b) perspective view of the configuration at the end of Stage I, (c) perspective view of 
a partially crushed configuration at Stage II, and (d) top view of the fully crushed configuration. 
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travelling hinge lines would have to move further until  reduces to / 8  which can be 

readily obtained from a simple geometric analysis. However, no such movement is 

observed from the numerical analysis. Here a geometrically compatible folding route as 

follows is assumed. Four inclined stationary plastic hinge lines, FA, FB, GA, and GB, 

two vertical ones, FC and GE, and two circumferential ones passing points F and G, 

respectively, all of which are highlighted by thick lines in Fig. 5.2(c), are formed and 

continuously bent until the basic folding element is crushed completely. Angle   

is / 8 , and the final crushing distance of the element is tan( /8)l  . The completely 

folded configuration of the element is shown in Fig. 5.2(d).  

 

The material is assumed to be rigid-perfectly plastic and strain rate insensitive with a 

suitably chosen plastic flow stress to take the strain-hardening of the material into 

consideration (Wierzbicki and Abramowicz, 1983).  

 

With the basic folding element above, the total energy absorption can then be 

calculated as the summation of the energies absorbed at stages I and II.  

 
5.1.2 Energy absorption at Stage I 

 

Previous research (Meng et al., 1983) indicated that when a travelling plastic hinge line 

swept an area, the material was bent to a radius r and then unbent again to flat. 

Wierzbicki and Abramowicz (1983) pointed out that in-plane deformation existed in 

the localized zone around the intersecting point of two travelling plastic hinge lines, 

e.g., A1 and B1 in Fig. 5.2(a). Therefore the total energy absorption at this stage consists 

of three parts: the energies absorbed by the circumferential stationary plastic hinge line, 

the inclined travelling plastic hinge lines, and the in-plane deformation. The energy 

absorption of the stationary plastic hinge line will be considered at stage II since it is 

continuously being bent during the entire crushing process.  

 

To obtain the energy absorption of the travelling plastic hinge lines, first consider hinge 

line CA1 only, see Fig. 5.2(a). According to the basic folding element, CA1 travels from 
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its original position until it reaches CA, sweeping the area of triangle ACA1. For 

simplicity, it is assumed that the bending and unbending radius r is constant and r b . 

Thus, the energy absorbed by CA1 is (Meng et al., 1983) 
 

 1

1

ACA
CA p p

2 ( )
4

S l l cE M M
r r


                             (5.1) 

 

in which 
1ACAS  is the area of triangle ACA1 and Mp is the full plastic bending moment 

per unit length 
 

 
2

0
p 4

tM 
                                  (5.2) 

Since there are four such travelling plastic hinge lines in the element, the energy 

absorbed by this part can be calculated as 
 

 
11 CA p

( )4 l l cE E M
r


                               (5.3) 

 

For the energy absorption of the in-plane deformation, the energy dissipated at one 

intersecting point is (Wierzbicki and Abramowicz, 1983) 
 

 e 1 p16
2
lrE I M
t

                                  (5.4) 

 
where I1 is a numerical integral and can be calculated as  
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   (5.5)                     

 

Since there are two intersecting points in the element, the energy absorbed by this part 

is 
 

 2 e 1 p2 16 lrE E I M
t

                           (5.6) 
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5.1.3 Energy absorption at Stage II 

 

The energy absorption at this stage can be obtained by adding up the energies absorbed 

by the three circumferential stationary plastic hinge lines, four inclined ones, and two 

vertical ones, all of which are highlighted by thick lines in Fig. 5.2(c).  

 

The three circumferential hinge lines have identical length b, and their angles of 

rotation from top to bottom are / 2 , 2arccos[( 2 1) / ]c l , and / 2 , respectively. 

So the energy absorbed by this part is 
 

 3 p
( 2 1)2arccos cE bM

l

 

  
 

                       (5.7) 

 

The total length of the four inclined hinge lines is  
 

 i
2

cos( / 8)
ll


                            (5.8) 

And their angle of rotation is  , so the energy absorbed by this part is  
 

 4 p
2

cos( / 8)
lE M


                  (5.9) 

 

The total length of the two vertical hinge lines is 
 

 v (1 tan )
8

l l
                   (5.10) 

 

And their angle of rotation is / 2 , so the energy absorbed by this part is 
 

 5 p
1 (1 tan )
2 8

E lM
                   (5.11) 

 
5.1.4 Mean crushing force 

 

Having obtained the energy absorptions at the two stages, the mean crushing force can 

now be calculated by applying the balance between external work and internal plastic 
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dissipation. Considering that there are four basic folding elements in a module, the 

following equation can be obtained 
 

 m 1 2 3 4 5tan( / 8) 4( )P l E E E E E                          (5.12) 

 

Substituting Eqs. (5.3), (5.6), (5.7), (5.9), and (5.11) into Eq. (5.12) yields  
 

        
m 1 p

( 2 1)9.66 154.51 9.66 2arccos 74.56l c r c bP I M
r t l l


          
   

    (5.13) 

 

It is reasonable to assume that r should be so chosen as to make Pm a minimum. 

Differentiate Eq. (5.13) with respect to r 
 

 m 0dP
dr

                                 (5.14) 

 

which yields 

 12

19.66 154.51 0l c I
r t


                             (5.15) 

 

Solving r from Eq. (5.15) gives 
 

 1/2 1/2 1/2
10.25 ( )r I l c t                            (5.16) 

 

Substituting Eqs. (5.2) and (5.16) into Eq. (5.13), we obtain 
 

   1/2 1/2 3/2 2
m 0 1

7.57 4.82 ( 2 1)19.31 ( ) arccos 18.64b b cP I l c t t
l l l


         
     

   (5.17) 

 

In Eq. (5.17), both terms in the brace depend only on tube geometry. For a square 

origami tube with fixed b and t, reducing c results in increase in both terms, whereas 

increasing l leads to increase in the first one and reduction in the second one.  
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In the case that / 1l b   and / 0.5c l  , 1(0.5) 0.21I   and the mean crushing force is  
 

 1/2 3/2 2
m 0 (6.29 32.80 )P b t t                     (5.18) 

 

The theoretical prediction of Pm calculated from Eq. (5.18) and the numerical data of 

A1_1 and A7_1 – A7_7 in Chapter 4 are plotted against t in Fig. 5.3. It can be seen that 

a good agreement between the theoretical prediction and the numerical results is 

obtained. Therefore Eq. (5.18) can be used to estimate the mean crushing force of a 

square origami tube with given geometry and material.  
 

 
 

Dividing Eq. (5.18) by Eq. (2.17) in Section 2.1.2 of Chapter 2 which gives the mean 

crushing force of conventional square tubes, the following equation can be obtained 
 

   1/2
m 0.94 4.91 /p b t                      (5.19) 

 

in which pm is the ratio of Pm of square origami tubes to that of conventional square 

tubes.  

 

 
Fig. 5.3  Comparison of theoretical prediction of Pm and numerical results. 
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Equation (5.19) indicates that Pm improvement of square origami tubes in comparison 

of conventional square tubes decreases with b / t. In other words, the larger b / t, the 

closer the energy absorption of a square origami tube is to that of a conventional one. 

The reason is that as b / t increases, the second term in Eq. (5.18), which corresponds to 

the energy absorption of stationary plastic hinge lines, accounts for a smaller portion of 

the total energy absorption, leading to a reduced Pm difference between a square 

origami tube and a conventional one.  

 

Despite the satisfactory agreement with numerical results, the theoretical analysis fails 

to capture the realistic final crushing distance of square origami tubes. The final 

crushing distance of the basic folding element, 41% of its original length, is 

considerably smaller than that of the numerical models which is typically about 70%. A 

more advanced basic folding element needs to be developed in order to conduct a more 

accurate analysis.  

 

The mean crushing force derived based on square origami tubes can also be used to 

estimate the energy absorption of rectangular and tapered ones. Recall that the energy 

absorption of a rectangular or tapered origami tube can be very close to that of a square 

origami tube with identical surface area and wall thickness provided that suitable 

pattern geometries are selected. Therefore the mean crushing force of a rectangular or 

tapered origami tube can be roughly estimated as that of the corresponding square tube, 

which considerably extends the scope of application of Eq. (5.18).    

 

 
5.2 Axial Crushing Tests 
 
5.2.1 Sample preparation and experimental setup 

 

It was mentioned in Chapter 4 that the origami tube had a developable surface and thus 

could be made out of a flat sheet of material with little in-plane stretching. Therefore 

the method of folding a steel sheet following the pre-manufactured origami pattern on 
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it was applied to construct origami tube samples. As it was difficult to fold a single 

sheet into a complete tubular shape, two half-tubes were first formed and then 

connected by welding. Consequently, a three-step procedure was used to construct tube 

samples. 

 Stamping the origami pattern on a steel sheet. A pair of male and female moulds, 

Fig. 5.4(a), was designed for the stamping process. They were made of hard steel 

and had protruded steel bars and corresponding rubber strips on the surface to 

define the geometry of the pattern. Two types of channel were machined on the 

moulds, i.e., that for rubber strips which was 5 mm wide and 3 mm deep, and that 

for steel bars which was 2 mm wide and 1 mm deep. The width and thickness of 

the rubber strips were 5 mm and 3 mm, respectively, whereas the radius of the 

steel bars was 1 mm. As seen in Fig. 5.4(b), the hill and valley creases could be 

well formed on the sheet by stamping.  
 

 

 

 Folding the stamped sheet along the creases to form a half-tube shown in Fig. 5.5. 

This step was finished by hand, which made the final product rather crude. 

Geometric imperfection in the form of out-of-plane deformation was found to be 

unevenly distributed on the tube walls.  
 

 Forming a complete tube by connecting two half-tubes using spot-welding. The 

width of the overlapped regions of two half-tubes was 10 mm, along which eight 

welding spots were evenly lined.  
 

 
                                                 (a)                                                        (b)  

Fig. 5.4  (a) Moulds for stamping, and (b) a stamped steel sheet. 
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Considering the brittle nature of very thin steel sheets, they were annealed at 600°C for 

one hour and then slowly cooled down in oven before stamping in order to avoid micro 

cracks along the creases. The same heat treatment procedure was also conducted on the 

origami tube samples for the sake of relieving heat effects caused by spot-welding.  

 

It should be pointed that this extremely simple manufacturing approach has its 

limitations. Only very thin tubes with wall thickness around 0.5 mm can be constructed 

and tubes built in this way are not of high quality. However, it will be shown next that 

even those relatively poorly constructed samples are capable of demonstrating the 

advantages of the origami tube.  

 

Three tube samples, including one conventional square tube and two square origami 

tubes, were built using mild steel sheets with t = 0.5 mm. Sample N was a conventional 

tube made through connecting two channel sections by spot-welding. The tube width 

and height of N were 60 mm and 120 mm, respectively. Samples O1 and O2 were two 

origami tubes with b = 60 mm, c = 30 mm, l = 60 mm, and M = 2. Note that the three 

samples were so designed that they had identical surface area.  

 

The axial crushing tests were conducted on an Instron machine with the upper loading 

limit of 100 kN. During the crushing process the tube stood on a thick plate while the 

cross head connected to the load cell moved downward to compress the tube. Both 

ends of the tube were free of constraints. Displacement control was applied in the tests 

 
Fig. 5.5  A half-tube folded out of a stamped sheet. 
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and the loading rate was chosen as 5 mm / min to avoid dynamic effects. The final 

crushing distance was chosen as 80 mm which was about 70% of the tube height.  

 
5.2.2 Material tensile tests 

 

Material tensile tests were conducted on three steel sheet specimens which were 

subjected to identical heat treatment with the tube samples at 0.5 mm / min loading rate 

to characterize the material properties. The averaged mechanical properties obtained 

were: E = 220.8 GPa, y 245.6  MPa, u 369.2  MPa, and u 25.0%  . A typical 

engineering stress vs strain curve is plotted in Fig. 5.6.  
 

 

 

5.2.3 Experimental results 

 

The conventional square tube sample N is first analzyed. Previous research (Reid et al., 

1986) indicated that the non-compact mode was most likely to appear in a square tube 

with / 120b t  . This mode is clearly observed from the test with N, Fig. 5.7(a), 

suggesting the effectiveness of the experimental setup at yielding reliable results.  
 

 
Fig.5.6  Material engineering stress vs strain curve. 
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Subsequently the axial crushing processes of origami tube samples O1 and O2 are 

shown in Fig. 5.7(b) and (c), respectively. It can be seen that both samples collapse one 

module after another following the predefined folding route, leading to a stable and 

progressive complete diamond mode. Stationary plastic hinge lines are formed along 

the horizontal creases and gradually bent during the crushing process, while travelling 

plastic hinge lines originate from the corners and move away to deform the material in 

the corner zones. The only evident difference between the crushing processes of the 

two samples is that the lower module of O1 is first folded whereas the upper one of O2 

collapses first. This discrepancy is probably attributed to the geometric imperfection on 

the tube samples.  
 

Compared with the complete diamond mode of the numerical models in Chapter 4, the 

failure mode of the physical samples seems somewhat irregular, e.g., the lobes in the 

same module of O1 are not folded exactly simultaneously. This phenomenon could 

also be caused by the geometric imperfection on the tube samples.  
 

 
 

The force vs displacement curves of all of the three samples are plotted in Fig. 5.8 and 

the experimental results are summarized in Table 5.1. It can be seen that the curves of 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.7  Crushing processes of (a) N, (b) O1, and (c) O2. 
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O1 and O2 are relatively smooth compared with that of N and stay above of it during 

most of the crushing process. The introduction of the origami pattern leads to Pmax 

reduction of more than 40%. The improvement in Pm, on the other hand, is not as 

remarkable, with only about 20% increase being achieved.  

 

Three conclusions can be drawn from the experiments. 

 The ability of the origami pattern to trigger the complete diamond mode in square 

origami tubes is verified. And both low Pmax and high Pm are obtained.  

 The Pm enhancement of very thin origami tubes tested here is not as pronounced as 

that of tubes with moderate thickness analyzed in Chapter 4. This observation is 

accordance with the trend reflected by Eq. (5.19). However, very thin tubes are 

rarely used in the design of energy absorption devices, and thus the usefulness of 

the origami design is not greatly compromised by this shortcoming.  

 The complete diamond mode is not very sensitive to geometric imperfection and 

local material variation, since the rather crude samples can still fail in the complete 

diamond mode. This feature would greatly reduce the requirement of accuracy in 

the manufacturing process, making the origami tube suitable for industrial mass 

production.   
 

 

 

 
Fig. 5.8  Force vs displacement curves of N, O1, and O2. 
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5.2.4 Numerical simulation of the axial crushing tests 

 

The experiments conducted in this chapter report much lower energy absorption 

improvement than that obtained from the numerical analysis in Chapter 4. To further 

verify the reliability of the finite element modelling approach employed in Chapter 4, 

the same approach was reapplied to simulate the axial crushing tests.  

 

Several modifications were made to simulate the experiments realistically. First of all, 

considering that the physical samples were constructed by spot-welding two halves, 

both a half-tube model and a whole-tube model were built. The former was identical to 

that used before, whereas the latter was implemented by connecting two halves 

through the mesh-independent fastener technique built in Abaqus (SIMULIA Corp., 

USA). Secondly, free-free boundary conditions were applied to the numerical tube 

model in accordance with the boundary conditions in the experiments. Finally, the 

material properties obtained from the tensile tests in Section 5.2.2 were assigned to the 

numerical model. The material density and Poisson ratio were 7800   kg/m3 

and 0.3  .  

 

The axial crushing processes of the two models are presented in Fig. 5.9(a) and (b), 

respectively. It can be seen that both models show the complete diamond mode, which 

agrees reasonably well with the experimental results. The failure mode of the 

numerical models is quite regular compared with that of the physical samples, with all 

of the lobes in one module being folded simultaneously.  

 

Table 5.1  Axial crushing test results of N, O1, and O2 

Sample Pmax (kN) Pmax reduction Pm (kN) Pm increase 

N 14.95  4.78  

O1 7.99 46.6% 5.50 15.1% 

O2 8.07 46.0% 5.84 22.2% 
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The numerical results of the two models are summarized in Table 5.2. Pmax of both 

models are found to be higher than those of O1 and O2 listed in Table 5.1. Geometric 

imperfection on the physical samples might well be responsible for this discrepancy. 

Pm of the whole-tube model is very close to those obtained experimentally. The half-

tube model, on the other hand, slightly underestimates Pm. This underestimation is 

most likely to be due to that the extra material in the overlapped area of the physical 

samples and the spot welds were not taken into consideration in the half-tube model. 

Despite that, a reasonable agreement between the numerical value and the 

experimental value is still obtained.  
 

 
 

 

 

Table 5.2  Numerical simulation results 

Model Pmax (kN) Pm (kN) 

Half-tube model 9.95 5.42 

Whole-tube model 10.04 5.62 

 
(a) 

 
(b) 

Fig. 5.9  Crushing processes of (a) half-tube model, and (b) whole-tube model. 
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In summary, the above results further confirm that the finite element modelling 

approach used in Chapter 4 can reasonably simulate the crushing of the origami tube 

and yield reliable results.  

 
5.2.5 Refined manufacturing approach  

 

The crude manufacturing approach presented in Section 5.2.1 has the merit of 

simplicity but can only be used to construct very thin origami tubes and the quality of 

the samples is low. Casting and hydroforming are possible alternatives but the 

manufacturing cost can be prohibitively high for small number of prototypes. 

Therefore a cost-effective manufacturing approach needs to be developed to construct 

origami tubes using thick materials.  

 

A commonly adopted approach in the manufacturing of commercial tubular energy 

absorption devices is to construct a tube by joining two halves through spot-welding. 

Pre-manufactured geometric imperfection on the tube such as indentation is usually 

formed by stamping. The same can be used for the origami tube. To keep the 

manufacturing cost low, the procedure of first stamping a steel sheet into a half-tube 

and then joining two halves by spot-welding to form a complete one was preserved, 

but a new way of stamping was developed to improve accuracy. Foreseeing the 

difficulty in forming a half-tube out of a steel sheet in one punch because of its 

complicated three-dimensional configuration, a set of moulds, Fig. 5.10, was designed. 

The set is composed of six individual parts named from A to F. The sizes and shapes of 

the parts are determined by the geometry of the origami tube to be manufactured. The 

bars in Part A and the corresponding holes in the others are used to align the parts 

during the stamping process. The three steps to form a half-tube using the moulds are 

as follows 

 Putting a steel sheet on the surface of Part A, and then placing Part B on the sheet 

through bars 1 and 2 in the middle of Part A and compressing Part B to stamp the 

pattern on one side.  
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 Placing Parts C and D on the sheet through bars 3 and 4, and bars 5 and 6, 

respectively, and compressing them to form the lobes at the two corners.  

 Placing Parts E and F on the sheet through bars 7 and 8, and bars 9 and 10, 

respectively, and compressing them to stamp the pattern on the other two sides. 
 

A set of moulds, Fig. 5.11(a), was manufactured and applied to construct prototypes. 

Threads were machined on the bars and the stamping compressive force was generated 

by turning nuts placed on the threaded bars. One of the prototypes which possesses 

identical geometry with that of O1 and O2 but has 1.0 mm wall thickness is shown in 

Fig. 5.11(b). Compared with O1 and O2, the tube sample constructed by the new 

approach is much better in terms of quality.   
 

 
 

 
 

This manufacturing approach can also be used to produce origami tubes with other 

profiles which also have a developable surface. Therefore it can be taken as a universal 

 
                                                 (a)                                                                   (b) 

Fig. 5.11  (a) Steel moulds, and (b) prototype origami tube. 

 
Fig. 5.10  Moulds to form a half-tube.  
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solution to the fabrication of the origami tube. In addition, since this approach is 

similar to that used in industry, the manufacturing cost of the origami tube is also 

comparable to that of conventional ones with dents.   

 

  
5.3 Summary 
 

Both theoretical and experimental research on the novel origami tube proposed in 

Chapter 4 has been presented in this chapter.  

 

In the theoretical part, a basic folding element has been developed to describe the 

folding process of square origami tubes. Three main sources of energy absorption in 

the basic folding element have been identified and the energy absorption from each 

source has been calculated. Applying the balance between external work and internal 

plastic deformation energy, a simple mathematical formula of the mean crushing force 

including only tube geometry and material mechanical properties has been derived. A 

reasonable agreement between theoretical prediction of the mean crushing force and 

numerical data is observed. Furthermore, although the formula is derived for square 

origami tubes, it can also be used to give a rough estimate of the mean crushing forces 

of rectangular or tapered origami tubes.  

 

In the experimental part, the following work has been conducted.  

 

First, a simple manufacturing approach has been developed to construct square origami 

tubes and quasi-static axial crushing tests have been conducted. In spite of the 

relatively low quality of the tube samples because of the crude manufacturing approach, 

the complete diamond mode is still observed from the experiments. In addition, both 

peak force reduction and mean crushing force increase are achieved in comparison 

with those of conventional square tubes. The experimental results demonstrate the 

usefulness of the origami pattern in triggering the complete diamond mode. It is also 
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indicated that the complete diamond mode triggered by the origami pattern is quite 

robust and not very sensitive to geometric imperfection and local material variation.  

 

Second, the finite element modelling approach developed in Chapter 4 has been 

reapplied to simulate the axial crushing tests. A good overall agreement between the 

numerical results and the experimental results in terms of failure mode and mean 

crushing force is achieved.  

 

Finally, a refined manufacturing approach has been developed to construct relatively 

thick square origami tubes of high quality. A set of moulds has been designed to 

gradually fold a sheet of material with thickness up to 2 mm into a half-tube. High 

quality prototypes have been constructed using the refined manufacturing approach, 

demonstrating that the seemingly geometrically complicated origami tube can be 

produced at a cost comparable to that of commercial energy absorption devices. Due to 

the fact that all of the origami tubes are made of developable surface, this approach can 

be regarded as a universal solution for the construction of origami tubes with various 

profiles.   

 

To this point, the design and analysis of the origami tube subjected to quasi-static axial 

crushing have been completed.  
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CHAPTER 6 
THE ORIGAMI BEAM 

 

 

 

Thin-walled beams are another type of commonly used structural form for energy 

absorption devices. Practical applications include automobile bumper beams and the 

beam components of roll-over and falling object protective structures (ROPS and 

FOPS). A typical failure mode of thin-walled beams subjected to lateral loading is the 

forming of localized plastic hinges along the beam. The lateral bending collapse mode 

of thin-walled beams is not as efficient as the axial folding mode of thin-walled tubes in 

terms of energy absorption because large plastic deformation concentrates near those 

plastic hinges whereas the rest of the beam undergoes only small deformation.  

 

The focus here is curved beams which are commonly used in automobile bumpers. 

Inspired by the origami tube, the origami technique is also applied to beams to alter 

their failure mode. A failure mode involving extensive plastic deformation along the 

entire beam instead of only in the neighbourhood of localized plastic hinges could be 

desirable from the perspective of energy absorption. Particularly, in the case of curved 

beams, if some sort of longitudinal folding of beam walls can be induced during the 

lateral bending collapse, high energy absorption might be attained.  

 

Two requirements are to be satisfied in order to realize this objective. First, 

longitudinal folding deformation of curved beams needs to be made to as easy as 

lateral bending so that it would occur during the crushing process. Second, an efficient 

longitudinal folding mode in terms of energy absorption needs to be induced so that a 

- 125 - 
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large amount of energy can be absorbed. As the novel origami patterns presented in 

Chapter 4 are able to trigger an efficient failure mode in terms of energy absorption in 

a thin-walled tube subjected to axial compression, high energy absorption can be 

achieved if the same can be transplanted to curved beams.  

 

In this chapter a type of curved beam with an origami pattern on the surface, known as 

the origami beam, is presented. The geometry of the origami pattern which is slightly 

different from those in Chapter 4 is first introduced in Section 6.1. Subsequently in 

Section 6.2 a series of origami beams with various configurations are designed and 

analyzed using finite element modelling approach. The numerical results are presented 

and discussed in Section 6.3. A summary is given in Section 6.4.   
 
 
6.1 Origami Pattern Geometry  
 

A module of the origami pattern for curved thin-walled beams is shown in Fig. 6.1. It 

can be seen that the pattern is very similar in shape to that for square origami tubes. 

Because of the curved profile of the beams to which the pattern is applied, however, 

the surface of the pattern has to be adjusted and therefore is no longer developable. 

Note that this undesirable property of nondevelopable surface is not caused by the 

pattern since the surface of a conventional curved beam is also not developable. 

Without the restriction of developable surface, there is much greater flexibility in the 

design of the pattern. However, different pattern designs lead to different levels of 

material in-plane stretching during the forming process if an origami beam is to be 

manufactured through stamping out of a conventional curved beam.  

 

The pattern geometry is as follows. For an origami module with cross section length a 

and width b, radius of curvature Rb, and module length l, five geometric parameters, 

i.e., dihedral angle 2  and crease lengths d1, d2, d3, and d4, shown in Fig. 6.1, are used 

to describe its configuration. Note that d1, d2, d3, and d4 are related to a, b, Rb, l, and 

2 through the following equations   
 



www.manaraa.com

Chapter 6 The Origami Beam 

- 127 - 

 

 b
1

b

( 2 1)( / 2)
tan
R b ld a

R 
 

     (6.1) 

 

 b
2

b

( 2 1)( / 2)
tan
R b ld a

R 
 

     (6.2) 

 

 b
3

b

( 2 1)( / 2)
2 2 tan

R b lbd
R 

 
     (6.3) 
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b
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R b lbd
R 

 
     (6.4) 

 

 
 

Among all of the geometric parameters, only five of them, e.g., a, b, Rb, l, and 2 , are 

independent. Should a square cross section be used, the number of independent 

geometric parameters can be further reduced to four because a b .  
 
 
6.2 Numerical Modelling 
 
6.2.1 Arrangement of origami modules  

 

A series of square-sectional curved beams, including one conventional beam and 

fourteen origami ones, were designed to investigate the failure mode and energy 

 
                   (a)                                                 (b)                                                        (c) 

Fig. 6.1  A module of the origami pattern for curved thin-walled beams. (a) Perspective view, (b) 
projection on y-z plane, and (c) projection on x-z plane. 
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absorption properties of the origami beam. The conventional beam P0, shown in 

Fig. 6.2, had the profile of an arc with the following geometry: beam length 

Lb = 776.8 mm, radius of curvature Rb = 1592 mm, cross section width b = 60 mm, 

wall thickness t = 2.0 mm.  
 

 
 

Fourteen origami beams, all of which had identical Lb, Rb, b, and t with those of P0, 

were also built. The beam was divided into M equal modules, each of which could be 

an origami module or one without origami pattern. Beams P1_1, P2_1, P3_1 - P3_5, 

and P4_1 had origami modules along the entire length, whereas beams P1_2 - P1_7, on 

the other hand, had only a few origami modules. The arrangement of origami modules 

on these six beams are depicted through the schematic diagrams shown in Fig. 6.3. In 

the diagrams, a box denotes an origami module, and a line denotes a group of modules 

without pattern the number of which is specified by the figure below the line. Since a 

group of modules without pattern is actually a conventional beam segment, non-

integral figures are also permissible. The arrangement of origami modules was 

considered for the reason that unlike the origami tube, the origami beam was expected 

to undergo relatively small longitudinal folding deformation, and thus it might not be 

the most effective way to place origami modules along the entire beam. Parameters l 

and 2  were varied among the origami beams to investigate the effect of pattern 

geometry. The configurations of the beams are listed in Table 6.1 where S denotes the 

surface area of a beam.  
 

 
Fig. 6.2  Configuration and loading scenario of P0. 
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Furthermore, considering that the surface areas of the beams are not identical due to 

varying pattern geometries, the mean crushing force cannot be directly used to 

compare their energy absorption capabilities. Therefore a weighted factor known as the 

Table 6.1  Configurations of the beams and numerical results. 

Model 
2θ 

(°) 

l 

(mm) 
M 

S 

(105mm2) 

Pmax 

(kN) 

Pmax 

reduction 

Pm 

(kN) 
NSEA 

P0 - -  1.920 23.82 - 14.91 1 

P1_1 156 57.15 14 1.963 20.16 15.4% 16.21 1.063 

P1_2 156 57.15 14 1.923 20.56 13.7% 11.58 0.775 

P1_3 156 57.15 14 1.926 23.64 0.8% 16.28 1.088 

P1_4 156 57.15 14 1.929 20.40 14.4% 12.21 0.815 

P1_5 156 57.15 14 1.957 18.77 21.2% 16.29 1.072 

P1_6 156 57.15 14 1.951 21.34 10.4% 17.06 1.126 

P1_7 156 57.15 14 1.945 21.62 9.2% 15.37 1.018 

P2_1 164 57.15 14 1.939 20.30 14.8% 17.41 1.156 

P3_1 168 57.15 14 1.931 21.01 11.8% 17.99 1.200 

P3_2 168 44.44 18 1.930 23.17 2.7% 18.55 1.238 

P3_3 168 50.00 16 1.930 20.75 12.9% 18.52 1.236 

P3_4 168 66.66 12 1.930 21.69 8.9% 17.93 1.196 

P3_5 168 79.99 10 1.930 21.98 7.7% 16.21 1.082 

P4_1 170 57.15 14 1.936 21.68 9.0% 16.28 1.083 

 
                                   (a)                                                                   (b) 

 
                                   (c)                                                                   (d) 

 
                                   (e)                                                                   (f) 
Fig. 6.3  Arrangements of origami modules on (a) P1_2, (b) P1_3, (c) P1_4, (d) P1_5, (e) P1_6, and 

(f) P1_7. 
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normalized specific energy absorption (NSEA) is introduced in the analysis, which is 

calculated by the following equation 
 

 m,i 0
i

m,0 i

P S
NSEA

P S
    (6.5) 

 

where NSEAi, Pm,i, and Si are the normalized specific energy absorption, mean crushing 

force, and surface area of beam i, respectively, and Pm,0 and S0 are the mean crushing 

force and surface area of P0, respectively.  

 
6.2.2 Finite element modelling 

 

Abaqus/Explicit (SIMULIA Corp., USA) was adopted to simulate the quasi-static 

crushing of the beam. The crushing scenario was modelled as a rigid shell moving 

downward to crumple the beam. The rigid shell, shown in Fig. 6.2, had identical radius 

of curvature with that of the beam. Due to the symmetry of beam geometry and loading 

condition, only a half of the beam was modelled to reduce computational time. Four 

node shell elements S4R were mainly employed to mesh the beam, supplemented by a 

few triangular elements to avoid excessively small or distorted elements. The lower 

edge of each end of the beam was clamped as shown in Fig. 6.2, and the longitudinal 

edges of the beam on the plane of symmetry were subjected to symmetric boundary 

conditions. All the degrees of freedom of the rigid shell were constrained except for 

the translational one in the vertical direction. Prescribed downward displacement of 

75 mm was assigned to the free translational degree of freedom of the rigid shell, and 

smooth magnitude built in Abaqus (SIMULIA Corp., USA) was applied to control the 

loading rate. Self-contact was defined to model the contact among different parts of the 

beam, whereas surface-to-surface contact was adopted to model the contact between 

the beam and the rigid shell. Friction was considered for both types of contacts and the 

friction coefficient μ was chosen as 0.25.  
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Mild steel used in Chapter 4 was applied in the numerical simulations. The mechanical 

properties are: 7800  Kg/m3, 210E  GPa, y 200  MPa, u 400  MPa, 

u 20.0%  , 0.3  , and n = 0.34.  

 

Convergence tests with respect to mesh density and analysis time, respectively, were 

conducted on Beam P1_1 prior to the analysis. It was found that a global mesh size of 

2 mm and an analysis time of 0.08s were able to yield satisfactory results.  

 

 
6.3 Results and Discussions  
 
6.3.1 Crushing of conventional beam 

 

The conventional beam P0, chosen as a baseline to assess the performance 

improvement of the origami beam, is first analyzed. Numerical simulation results show 

that P0 fails in the typical lateral bending collapse mode. It can be seen from 

Fig. 6.4(a) that as the beam is being crushed, local buckling first occurs in the mid-

span of the beam where the bending moment is at the maximum, followed by the 

forming of a localized plastic hinge. Subsequently, the beam segments on the left hand 

side and the right hand side rotate about the plastic hinge up to the completion of the 

crushing process.  

 

The force vs displacement curve of the beam is plotted in Fig. 6.5. It can be seen that a 

high peak force appears at the beginning of the crushing and is followed by a steady 

drop. Subsequently the force rises again as the plastic hinge is squeezed until the 

crushing process ends. The numerical results indicate that more than 50% of the energy 

absorption of the beam comes from the neighbourhood of the plastic hinge. This high 

degree of concentration is also reflected from the Mises stress contour plots in 

Fig. 6.4(a) which clearly show that the stress level is among the highest in the vicinity 

of the plastic hinge. 
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Fig. 6.5  Force-displacement curves of P0 and P1_1. 
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Fig. 6.4  Crushing processes of (a) P0, and (b) P1_1. 
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6.3.2 Crushing of origami beam 

 

The crushing process of origami beam P1_1 which has origami modules along the 

entire length is presented in Fig. 6.4(b) as a representative. It can be seen that P1_1 has 

a failure mode clearly different from that of P0. First of all, no localized plastic hinge 

is formed in the beam. Instead, plastic deformation is distributed along the entire beam. 

Furthermore, folding of beam walls in the longitudinal direction occurs during the 

crushing process. Specifically, the longitudinal length of the beam undergoes a process 

of shortening followed by elongation, which is realized mainly through the axial 

folding and unfolding of the origami modules. Due to the relatively small curvature of 

the beam, nevertheless, the longitudinal folding of beam walls is not as pronounced as 

the folding of the origami tube. This new failure mode is referred to as the longitudinal 

folding mode. A qualitative explanation of the occurrence of this new failure mode is 

as follows. A beam without pattern is rather stiff longitudinally, allowing little 

deformation, and therefore it can only fail through the forming of a localized plastic 

hinge. The origami pattern, however, makes it easier for the beam to deform in the 

longitudinal direction. As a result, longitudinal folding of beam walls occurs at the 

beginning of the crushing process, which in turn prevents any localized plastic hinge 

from being formed, leading to the new failure mode with globally distributed 

deformation.  

 

The force vs displacement curve of P1_1 is also plotted in Fig. 6.5. A quite smooth 

curve is obtained, which is a desirable feature as it means that the energy dissipation 

rate is rather stable. The numerical results presented in Table 6.1 show that compared 

with those of P0, P1_1 achieves a Pmax reduction of 15.4% and a NSEA increase of 

6.3%. Therefore while confirming that the longitudinal folding mode is more efficient 

in terms of energy absorption than the lateral bending collapse mode, these results 

suggest that further optimization of pattern geometry is required to obtain substantial 

energy absorption improvement.  
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6.3.3 The dihedral angle 

 

The numerical analysis of P1_1 shows that a new failure mode featuring longitudinal 

folding of beam walls can be successfully triggered by the origami pattern, but the 

energy absorption improvement is only marginal. One method of enhancing the energy 

absorption of the origami beam is to make it more difficult for the beam walls to be 

folded, which can be realized by choosing a larger dihedral angle 2 so that the beam 

is folded less initially. 
 

 
 

Three beams, P2_1, P3_1, and P4_1, which have identical M with P1_1 but 

monotonically increasing 2 , are analyzed. Two types of failure modes are observed 

from the numerical simulations. When 2  is relatively small, P2_1 and P3_1 show 

failure modes similar to that of P1_1. Only the crushing process of P3_1 is shown in 

 

(a) 

 

(b) 
Fig. 6.6  Crushing processes of (a) P3_1, and (b) P4_1. 
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Fig. 6.6(a). In addition, comparison of the failure modes of P1_1 and P3_1 reveals that 

as 2  increases, the deformation becomes less uniform along the beam. For instance, 

the sixth module of P3_1 from left to right undergoes much larger deformation than the 

others at the end of the crushing, whereas no such noticeable deformation 

concentration is observed in P1_1. When 2  increases further, however, the crushing 

process of P4_1, Fig. 6.6(b), shows that longitudinal folding of beam walls is no longer 

obvious and a localized plastic hinge is clearly formed in the mid-span of the beam. As 

a result, the failure mode of P4_1 returns to the lateral bending collapse mode. This is 

understandable because when 2  reaches a certain value, folding along the pattern is 

no longer easier than forming a localized plastic hinge, and consequently the origami 

beam reduces back to a conventional beam.  
 

 
 

The force vs displacement curves of P2_1, P3_1, and P4_1 are plotted along with that 

of P1_1 in Fig. 6.7. Two observations can be made from the curves. First of all, for 

P1_1, P2_1 and P3_1 which show similar failure modes, the overall force is elevated 

as 2  becomes larger, indicating that increasing 2  is successful in making 

longitudinal folding of the origami beam consume more energy. The side effect of a 

large 2 , however, is that the curve is less smooth because of the increasingly non-

uniform deformation in the beam. Secondly, the curve of P4_1 is similar to that of P0 

 
Fig. 6.7  Force vs displacement curves of P1_1, P2_1, P3_1, and P4_1. 
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in shape, both of which feature an obvious force drop, although Pmax of P4_1 is still 

slightly reduced by the origami modules.  

 

Table 6.1 gives Pmax, Pm, and NSEA of each beam. It is shown that Pmax increases 

monotonically with 2 . NSEA, on the other hand, initially increases with 2  and 

subsequently drops when the longitudinal folding mode fails to be triggered. NSEA 

increase of P3_1 can reach as much as 20.0%, while Pmax is still reduced by 11.8%, 

which indicates that adjusting 2  is effective at improving the energy absorption of 

the origami beam.      

 
6.3.4 The number of modules 

 

The number of modules M is another parameter that can be varied in the design of the 

origami beam with origami modules along the entire length. From the perspective of 

manufacturing, it is desirable to have as few modules as possible in order to keep the 

beam geometry simple. On the other hand, a small number of modules might not be 

able to trigger the desired longitudinal folding mode. Therefore a suitable value of M 

needs to be chosen to balance the mutually contradicting requirements of simple 

geometry and high energy absorption.  

 

Four origami beams, P3_2 - P3_5, which possess identical 2  with that in P3_1 but 

have 18, 16, 12, and 10 origami modules along the entire length, respectively, are 

analyzed. Figure 6.8 presents the crushed configurations of P3_2, P3_3, and P3_4. It 

can be seen that all of the three beams collapse in the longitudinal folding mode. When 

M reduces to 10, however, the crushing process of P3_5, Fig. 6.9, shows that a 

localized plastic hinge is formed at the mid-span of the beam, and the lateral bending 

collapse mode is finally obtained.  
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The force vs displacement curves of the four beams as well as P3_1 are plotted in 

Fig. 6.10. The curves of P3_1 - P3_4 are found to have similar shapes, whereas that of 

P3_5 shows large magnitude fluctuation as in the case of P0. Pmax, Pm, and NSEA of 

each beam are given in Table 6.1. It can be seen that NSEA of P3_5 is the lowest 

among the five beams. In cases where the longitudinal folding mode is successfully 

triggered, NSEA increases with M, but the effectiveness of using a large M to improve 

the energy absorption seems only moderate since NSEA difference between P3_2 with 

M = 18 and P3_4 with M = 12 is not substantial. In addition, the energy absorption of 

the origami beam can eventually saturate when M takes a relatively large value, for 

NSEA of P3_2 with M = 18 is very close to that of P3_3 with M = 16.   
 

 

Fig. 6.9  Crushing process of P3_5. 

 
Fig. 6.8  Crushed configurations of (a) P3_2, (b) P3_3, and (c) P3_4. 
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6.3.5 Arrangement of origami modules 

 

First of all, three origami beams, P1_2, P1_3, and P1_4, which have one, two, and 

three origami modules discretely placed in the beam, respectively, are analyzed. The 

crushed configurations of the three beams are given in Fig. 6.11. All of the three beams 

fail in the lateral bending collapse mode with a localized plastic hinge in the middle of 

the beam, regardless of whether an origami module is placed there. The origami 

module in the mid-span of the beam, as in the cases of P1_2 and P1_4, only slightly 

affects the configuration of the plastic hinge.  
 

 

 
Fig. 6.11  Crushed configurations of (a) P1_2, (b) P1_3, and (c) P1_4. 

 
Fig. 6.10  Force vs displacement curves of P3_1 - P3_5. 
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The force vs displacement curves of the three beams are plotted in Fig. 6.12. All of the 

three curves are similar in shape to that of the conventional beam P0. The curves of 

P1_2 and P1_4 with an origami module in the mid-span are below that of P1_3. The 

numerical results given in Table 6.1 show that both P1_2 and P1_4 have lower NSEA 

than that of P0, which implies that the origami module actually compromises the 

energy absorption capability of the localized plastic hinge. NSEA of P1_3, on the other 

hand, is 8.8% higher than that of P0, suggesting that even two origami modules in the 

beam can help to induce some longitudinal folding deformation and thus increase the 

energy absorption.   
 

 
 

Now let us examine the scenario when both a plastic hinge and longitudinal folding of 

beam walls occur together. It is conjectured that it may lead to high energy absorption. 

To achieve this goal, a suitable arrangement of origami modules and modules without 

pattern needs to be worked out. Having known that an origami module in the middle of 

a beam actually impairs the energy absorption, it is desirable to place origami modules 

near the two ends in a beam and modules without pattern in the middle.  

 

Three origami beams, P1_5, P1_6, and P1_7, which have identical pattern geometry 

with that of P1_1 but increasing number of modules without pattern, are analyzed. 

 
Fig. 6.12  Force vs displacement curves of P1_2, P1_3, and P1_4. 
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Numerical results show that by appropriately choosing the number of modules without 

pattern in the middle of a beam, both a localized plastic hinge and longitudinal folding 

of the beam can be formed. The crushing process of P1_6 which contains this new 

failure mode is shown in Fig. 6.13. At the early stage of the crushing, an obvious sign 

of longitudinal folding is observed, which is supported by the relatively uniform stress 

distribution along the beam. As P1_6 is deformed further, a localized plastic hinge is 

formed in the middle of the beam and is continuously bent up to the end of the 

crushing process. This new failure mode is referred to as the mixed mode. When the 

number of modules without pattern is too small, it can be seen from the crushed 

configuration of P1_5, Fig. 6.14(a), that although longitudinal folding deformation is 

still maintained, no localized plastic hinge is formed in the middle of the beam where 

no origami module is placed. When, on the other hand, the number of modules without 

pattern is too large, as can be seen from the crushed configuration of P1_7 in 

Fig. 6.14(b), the central plastic hinge dominates the crushing process. Therefore the 

key of the origami beam design seems to achieve a balanced energy absorption 

between plastic hinge bending and beam walls folding. This can be realized by varying 

the number of the two types of modules.   
 

 
 

 

Fig. 6.13  Crushing process of P1_6. 
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The force vs displacement curves of the three beams together with P1_1 are plotted in 

Fig. 6.15. A transition in curve shape from being relatively smooth to featuring an 

obvious force drop can be clearly observed from the figure. The numerical data in 

Table 6.1 show that NSEA of P1_6, which fails in the mixed mode, is the highest 

among the four beams. These results suggest that the mixed mode is the most efficient 

in terms of energy absorption among the three main failure modes that have been 

investigated so far.  
 

 

 
 
6.4 Summary 
 

 
Fig. 6.15  Force vs displacement curves of P1_1, P1_5, P1_6, and P1_7. 
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Fig. 6.14  Crushed configurations of (a) P1_5, and (b) P1_7. 
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The failure modes and energy absorption capabilities of a series of curved origami 

beams subjected to quasi-static lateral crushing have been studied numerically in this 

chapter. A modified version of the origami patterns developed in Chapter 4 has been 

applied on curved thin-walled beams to trigger more efficient failure modes in terms of 

energy absorption than the lateral bending collapse mode typical of conventional 

curved beams. 

 

Numerical simulation has demonstrated that two new failure modes, namely, the 

longitudinal folding mode and the mixed mode, can be triggered in the origami beam. 

If origami modules are placed along the entire length of a beam, the longitudinal 

folding mode which features folding of beam walls in the longitudinal direction can be 

obtained provided that the pattern geometry is properly designed. The effects of 

dihedral angle and number of modules on the failure mode and energy absorption of 

the origami beam have been investigated. A NSEA increase of as much as 23.6% can 

be achieved, whilst a peak force reduction by 12.9% is also obtained in the same beam.  

 

If, on the other hand, origami modules are placed only near both ends of a beam, the 

mixed mode involving both longitudinal folding of beam walls and bending of a 

central plastic hinge can be triggered by choosing an appropriate combination of 

origami modules and modules without pattern. The mixed mode is found to be most 

efficient in terms of energy absorption among all of the three failure modes. An 

origami beam collapsing in the mixed mode is geometrically simpler than one in the 

longitudinal folding mode and thus can be manufactured more conveniently.  

 

For this type of geometrically complicated origami structure, manufacturing is a very 

important issue. Different from the origami tube, the surface of the origami beam is not 

developable due to the nondevelopable nature of curved beam surface. On one hand, 

removal of the restriction of developability allows more flexibility in the design of the 

origami pattern. On the other hand, the nondevelopable surface implies that material 

in-plane stretching is unavoidable during the forming process of the origami beam if it 

is to be made out of a conventional beam. In this chapter a simple pattern geometry has 
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been proposed as a compromise to ensure the surface area variation from a 

conventional beam to the corresponding origami beam being very small. It is typically 

below 2% as seen from Table 6.1, which indicates that only a small magnitude of 

material stretching would incur if the origami beam is manufactured by means of 

stamping the origami pattern on a conventional beam. Considering that the surface area 

change caused by stamping dents on the surface of thin-walled tubes is much larger 

than 2%, no great difficulty is expected in constructing the origami beam.   
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CHAPTER 7 
THE COMPLETE BUMPER 

 

 

 

Chapters 4, 5, and 6 showed that new failure modes that were efficient in terms of 

energy absorption could be triggered in thin-walled tubes and beams by pre-folding 

their surfaces with origami patterns. Both low peak force and high energy absorption 

were achieved.  

 

Only idealized load cases have been considered so far, whereas energy absorption 

devices in practice are most likely to be subjected to more complex loading. How the 

origami structures perform under practical loading scenarios remains unclear. In fact, 

the analysis of structures subjected to realistic loading has been a missing element in 

most of the literatures on thin-walled energy absorption structures.  

 

In this chapter the performances of the two types of origami structures subjected to 

practical loading are addressed through the design and analysis of a number of 

automobile frontal bumpers using the origami tube and the origami beam as key 

components. A brief introduction of automobile frontal bumpers and relevant impact 

tests to evaluate the performance of a bumper are first outlined in Section 7.1. Section 

7.2 focuses on the design and analysis of four bumpers subjected to three impact tests. 

In Section 7.3 the numerical results are presented and discussed. And finally a 

summary is given in Section 7.4.  
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7.1 Introduction of Automobile Frontal Bumpers  
 

The idea of crumple zone was first introduced by Mercedes-Benz engineer Béla 

Barényi on the 1959 Mercedes-Benz "Fintail"1 and has since become one of the most 

important concepts in the area of auto safety. A typical crumple zone design is an 

automobile frontal bumper. It is normally composed of one cross beam and two 

crashcans attached on each end of the beam and is designed to deform and absorb 

kinetic energy during a low speed collision in order to reduce damage to the main 

structure of a vehicle.  

 

A vehicle could be hit from different angles at different speeds in a real world car crash. 

Therefore a frontal bumper needs to pass a number of impact tests to ensure a sound 

all-around performance. Four main impact test standards are currently adopted to 

evaluate the performance of a bumper subjected to low speed impacts. In Europe, the 

United Nations Economic Commission for Europe (UNECE) has designed a test 

procedure, known as ECE 42 (UNECE, 1980), which vehicle manufacturers have to 

comply with. In the full overlap test, a bumper is hit by a pendulum at 4 km/h 

(2.5 mph). Corner tests are also conducted at 2.5 km/h (1.6 mph). In the United States, 

the National Highway Traffic Safety Administration (NHTSA) has established a 

similar test procedure for passenger cars, known as Part581 Bumper Standard (NHTSA, 

1999), which includes a series of car-into-barrier tests conducted at 2.5 mph on the full-

width of a bumper and at 1.5 mph on the corner of a bumper. Note that the crashcans in 

a bumper are usually not initiated in these low speed tests.  

 

In addition, the Research Council for Automobile Repairs (RCAR) has developed a 

structural test protocol to determine the damageability and reparability features of 

vehicles. The test is a 40% overlap frontal impact into an angled barrier at 15 km/h (9.3 

mph) (RCAR, 2006). Note that this test is currently used by the Motor Insurance Repair 

                                                

1 Source: http://www.dpma.de/ponline/erfindergalerie/e_bio_barenyi.html 
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Research Centre, Thatcham, U.K., to rate vehicles for insurance pricing. The 

counterpart of the RCAR structural test protocol in the United States is a test protocol 

developed by the Insurance Institute for Highway Safety (IIHS) to assess bumper 

designs based on how easily a vehicle can be repaired after impact (IIHS, 2009). The 

protocol includes a full overlap test at 10 km/h (6.2mph) and front and rear corner tests 

at 5 km/h (3.1mph). In these tests, both the bumper beam and the crashcans in a bumper 

are expected to be crushed, but the main vehicle structure is not severely damaged.   

 

When subjected to high speed impacts, the main task of a bumper is to absorb as much 

kinetic energy as possible and transmit the loading to the main vehicle structure in a 

stable manner. The UNECE regulates bumper designs at high speed impacts through 

ECE 94 (UNECE, 2007). The procedure of conducting a 40% overlap frontal impact at 

56 km/h (34.8 mph) is depicted in the standard. The European New Car Assessment 

Program (Euro NCAP) has also developed a testing procedure to evaluate the 

performance of a bumper subjected to high speed impacts based on ECE 94 but at 

64 km/h (40 mph)2. Both the entire bumper system and the main vehicle structure are 

likely to undergo damage in these tests.  

 

It can be clearly seen from the above introduction that designing an effective frontal 

bumper is a challenging task and requires multiple impact tests at different speeds. 

Therefore frontal bumpers provide an ideal platform to evaluate the performances of 

the two types of origami structures for two reasons. First of all, both the origami tube 

and the origami beam can be collectively integrated in one bumper as crashcan and 

cross beam, respectively. Secondly, a frontal bumper needs to be tested through a 

series of impact scenarios, and therefore the two types of origami structures subjected 

to practical complex loading conditions can be evaluated.  

 

 

                                                

2 Source: http://www.euroncap.com/tests/frontimpact.aspx 
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7.2 Design of Bumpers and Finite Element Modelling 
 

7.2.1 Design of bumpers 

 

A total of four bumpers were designed to investigate the performances of the origami 

tube, also referred to as the origami crashcan in this chapter as it is called in 

automobile industry, and the origami beam.  
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.1  (a) Front view of CC, (b) front view of OO, and (c) perspective view of CC. 
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Two cross beams, a conventional one, Cb, shown in Fig. 7.1(a), and an origami one, Ob, 

shown in Fig. 7.1(b), were built. Cb had the profile of a shallow curved beam with a 

square cross section, and Ob possessed identical overall size with that of Cb but had 

origami modules along the entire beam segment between two crashcans. The beam 

length Lb, radius of curvature Rb, cross section width b, wall thickness t, and surface 

area S of both beams, and the dihedral angle 2 , module length l, and number of 

modules M of the origami beam are listed in Table 7.1.  

 

The two type I tapered tubes designed in Section 4.5.5 of Chapter 4, the conventional 

one Cc and the origami one Oc, were adopted here as crashcans. The configurations of 

the two crashcans are reproduced in Table 7.2. 
 

With all of the components being designed, four bumpers were attained by combining 

the cross beams and the crashcans in various ways. The relative positions of the two 

crashcans and the cross beam in a bumper is shown in Fig. 7.1(c). Small transitional 

plates were introduced between the beam and each crashcan to join them rigidly. The 

configurations of the bumpers are listed in Table 7.3. 
 

 
 

 
 

Table 7.2  Configurations of the crashcans 

Model a1 (mm) a2 (mm) b (mm) t (mm) c (mm) l (mm) M 

Cc 60 90 60 2.0 - - - 

Oc 60 90 60 2.0 22.5 45 4 

Table 7.1  Configurations of the cross beams 

Model 
Lb  

(mm) 

Rb  

(mm) 

b  

(mm) 

t 

 (mm) 

S 

 (105mm2) 

2   

(°) 

l  

(mm) 
M 

Cb 1276 1592 60 2.0 3.216 - - - 

Ob 1276 1592 60 2.0 3.227 168 57.15 14 
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7.2.2 Design of impact tests 

 

It has been mentioned in Section 7.1 that a variety of impact tests are required to be 

conducted on a bumper to evaluate its performances under practical loading conditions. 

Specifically, two main impact scenarios, the full overlap impact and the 40% overlap 

impact, are frequently applied in low speed impacts, whereas the 40% overlap impact is 

mainly employed in high speed impacts. In addition, the impact speed for low speed 

impacts is usually below 9.3 mph, and that for high speed impacts is no larger than 

40 mph. To comprehensively evaluate the performances of the bumpers, three impact 

tests were considered. 

 The full overlap impact test at 5 m/s (11.2 mph) constant loading speed. The barrier, 

shown in Fig. 7.1(a), was designed based on the IIHS Bumper Test Protocol 

(Version VII) (IIHS, 2009) with the following geometry: barrier length 

L1 = 1524 mm, and radius of curvature R1 = 3404 mm.  

 The 40% overlap impact test at 5 m/s constant loading speed. The barrier, shown in 

Fig. 7.1(b), had identical shape with that in the RCAR structural test protocol 

(RCAR, 2006). The geometry of the barrier was: corner radius of curvature 

R2 = 150 mm, and barrier angle 10   . 

 The 40% overlap impact test at 20 m/s (44.7 mph) constant loading speed. The 

barrier design was identical to that in the 40% overlap impact test at 5 m/s.  

 
7.2.3 Finite element modelling  

 

Table 7.3  Configurations of the bumpers 

Model Beam Crashcans 

CC Cb Cc 

CO Cb Oc 

OC Ob Cc 

OO Ob Oc 
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The impact scenario was simulated as a rigid barrier moving downward to compress a 

bumper fixed in space. Due to the symmetry of bumper geometry and loading 

condition, only a half of the bumper was analyzed to reduce computational time. The 

rigid barrier was modelled as a rigid shell and meshed with 4-node 3D rigid 

quadrilateral elements R3D4. Quadrilateral shell elements with reduced integration 

S4R were mainly employed to mesh the bumper, supplemented by a small number of 

triangular elements to avoid excessively small or distorted elements. The lower ends of 

the two crashcans in the bumper were fixed and symmetric boundary conditions were 

applied to the edges of the bumper on the plane of symmetry. All of the degrees of 

freedom of the rigid barrier were constrained except for the translational one in the 

vertical direction. Downward velocity boundary condition was assigned to the free 

degree of freedom of the rigid barrier to control the crushing process. The final 

crushing distance was chosen as 250 mm in the full overlap impact tests and 200 mm 

in the 40% overlap impact tests. Two types of contacts were defined in the analysis: 

self-contact among different parts of the bumper and surface-to-surface contact 

between the rigid barrier and the bumper. Friction was also taken into consideration 

and the friction coefficient   was selected as 0.25 for both types of contacts.   

 

Mild steel used in Chapters 4 and 6 was also selected as the material. The mechanical 

properties are: 7800  Kg/m3, 210E  GPa, 0.3  , y 200  MPa, u 400  MPa, 

u 20.0%  , and n = 0.34. Material strain rate effects were considered through the 

Cowper-Symonds equation (2.19) in Chapter 2. The material constants Cr and qr were 

chosen as 6844 s-1 and 3.91, respectively (Abramowicz and Jones, 1984a). 

 

 
7.3 Results and Discussions 
 
7.3.1 Full overlap impact at 5 m/s 

 

The crushing processes of the four bumpers subjected to this test are shown in Fig. 7.2, 

and their force vs displacement curves are plotted in Fig. 7.3. The mean crushing force, 
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Pm, energy absorption of the beam, Eb, and energy absorption of the crashcan, Ec, of 

the four bumpers are listed in Table 7.4.  
 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 7.2  Full overlap crushing processes at 5 m/s of (a) CC, (b) CO, (c) OC, and (d) OO. 
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7.3.1.1 Performance of the origami crashcan  

 

Bumpers CC and CO, consisting of an identical conventional beam but different types 

of crashcans, are analyzed here to investigate the performance of the origami crashcan 

as a bumper component. The crushing process of CC, Fig. 7.2(a), shows that the 

conventional beam first fails in the lateral bending collapse mode, followed by the 

crushing of the two conventional crashcans in the symmetric mode. Bending 

deformation is clearly observed in the crashcans. The crushing process of CO is shown 

in Fig. 7.2(b). It can be seen that the conventional beam fails in a similar way to that in 

CC. The two origami crashcans collapse following the patterns on their surfaces, 

indicating that they integrate well with the conventional beam. However, only some of 

Table 7.4  Numerical results of the bumpers subjected to the full overlap impact at 5 m/s 

Model Pm (kN) Pm increase Eb (kJ) Eb increase Ec (kJ) Ec increase 

CC 83.21 - 7.32 - 6.30 - 

CO 98.12 19.6% 7.35 0.4% 8.12 28.9% 

OC 84.85 2.0% 8.04 9.8% 6.20 -1.6% 

OO 102.17 23.4% 8.50 16.1% 8.11 28.7% 

 
Fig. 7.3  Force vs displacement curves of the bumpers subjected to the full overlap impact at 5 m/s. 
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the lobes at the corners of the origami crashcans are well folded because of the large 

bending deformation during the crushing process, resulting in the incomplete diamond 

mode being formed in the end.   
 

The force vs displacement curves of the two bumpers are plotted in Fig. 7.3. The two 

curves almost overlap up to the displacement of about 120 mm during which only the 

beams are substantially deformed, and subsequently the curve of CO rises on top of 

that of CC as the crashcans start to fold. The numerical results in Table 7.4 show that 

Eb of the two bumpers are very close to each other, which is reasonable because both 

beams collapse in an identical failure mode. Ec of CO, on the other hand, is 28.9% 

higher than that of CC, which clearly demonstrates the advantage of the origami 

crashcan design. Mainly because of the high energy absorption of the origami 

crashcans in CO, Pm of CO is increased by 19.6% compared with that of CC.    

 

7.3.1.2 Performance of the origami beam 

 

Bumper OC is analyzed and compared with CC, both of which consist of conventional 

crashcans but different types of beams, in order to investigate the performance of the 

origami beam as a bumper component. The crushing process of OC is shown in 

Fig. 7.2(c). It can be seen that the origami beam collapses before the conventional 

crashcans, and the longitudinal folding failure mode reported in Chapter 6 is induced in 

the beam. This indicates that the origami beam works well with the conventional 

crashcans. After the collapse of the beam, both conventional crashcans fold in the 

symmetric mode as those in CC.  

 

The force vs displacement curve of OC is also plotted in Fig. 7.3 along with that of CC. 

By looking into the curves in detail, the entire crushing process of each bumper can be 

roughly divided into three stages based on displacement. 

 Stage I (0 – 70 mm): the main deformation mechanism is the collapse of the beam 

segment between two crashcans.  
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 Stage II (70 – 120 mm): the main deformation mechanism is the flattening of the 

localized zones of the beam in the neighbourhood of the two crashcans.  

 Stage III (120 – 250 mm): the main deformation mechanism is the crushing of the 

two crashcans.   

 

At Stage I, the pattern induces the longitudinal folding mode in the origami beam in 

OC. If only the deformation at this stage is considered, Pmax and Eb of CC and OC, 

listed in Table 7.5, show that a Pmax reduction of 17.5% and an Eb increase of 18.0% 

are obtained for OC, which agree reasonably well with the outcomes obtained in 

Chapter 6. Therefore it can be concluded that the pattern on the origami beam in OC 

functions well in this loading scenario.   
 

 
 

At Stage II, however, the pattern on the origami beam in OC appears to have little 

effect on the localized flattening deformation, and therefore does not help to improve 

the energy absorption. As a result, Eb of OC shown in Table 7.4, which accounts for 

the deformation at all three stages, is only 9.8% higher than that of CC. Pm of OC is 

only increased by 2.0% compared with that of CC, indicating the limited effect of the 

origami beam. 

 

In summary, while confirming the effectiveness of the origami pattern at triggering the 

longitudinal folding mode in the origami beam, the results indicate that there is still 

room for further improvement of the origami beam design in order to achieve higher 

energy absorption.     

 

7.3.1.3 Combination of the origami crashcan and the origami beam 

 

Table 7.5  Numerical results of CC and OC subjected to the full overlap impact at 5 m/s at Stage I 

Model Pmax (kN) Pmax reduction Eb (kJ) Eb increase 

CC 45.84 - 1.50 - 

OC 37.84 17.5% 1.77 18.0% 
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It has been shown that both the origami crashcan and the origami beam are able to 

increase the energy absorption of a bumper. In this section bumper OO, consisting of 

an origami beam and two origami crashcans, is analyzed to determine the effect of 

combining the two types of origami structures.  

 

The crushing process of OO is shown in Fig. 7.2(d). Both the origami beam and the 

origami crashcans collapses following the patterns on their surfaces, suggesting that 

the two types of origami structures work well together. In addition, obvious bending 

deformation is again observed in the crashcans. The force vs displacement curve of OO 

is plotted in Fig. 7.3 along with those of CC, CO, and OC, and the numerical results 

are given in Table 7.4. It can be seen that the curve of OO is among the highest during 

the entire crushing process. Pm of OO is higher than those of the other three bumpers, 

with an increase of 23.4% being obtained compared with that of CC. Therefore it can 

be concluded that combining the two types of origami structures can lead to the most 

efficient bumper design in this loading scenario.  

 
7.3.2 40% overlap impact at 5 m/s 

 

The crushing processes of the four bumpers subjected to this test are shown in Fig. 7.4 

and their force vs displacement curves are plotted in Fig. 7.5. The numerical results are 

summarized in Table 7.6. Note that Ec in the table denotes the energy absorption of the 

crashcan on the side of impact.  

 

7.3.2.1 Performance of the origami crashcan 

 

The responses of bumpers CC and CO, both of which are composed of an identical 

conventional beam but different types of crashcans, are presented here in order to 

evaluate the performance of the origami crashcan subjected to the 40% overlap impact 

at 5 m/s. The crushing processes of the two bumpers are shown in Fig. 7.4(a) and (b), 

respectively.  
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(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 7.4  40% overlap crushing processes at 5 m/s of (a) CC, (b) CO, (c) OC, and (d) OO. 
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Four observations can be made from the crushing of the two bumpers. First, the 

conventional beam in each bumper fails mainly by localized flattening in the 

neighbourhood of the crashcan on the side of impact. This mode is referred to as the 

localized flattening mode. Second, only the crashcan on the side of impact is 

completely crushed in each case, whereas the other one undergoes quite small 

deformation. Third, the conventional crashcan in CC collapses in the symmetric mode, 

whereas the origami one in CO in the complete diamond mode. This observation 

indicates that the origami crashcan also integrates well with the conventional beam in 

this loading scenario. Finally, bending deformation is quite small in both types of 

crashcans.  

 

Table 7.6  Numerical results of the bumpers subjected to the 40% overlap impact at 5 m/s 

Model Pm (kN) Pm increase Eb (kJ) Eb increase Ec (kJ) Ec increase 

CC 64.58 - 3.97 - 8.21 - 

CO 82.15 27.2% 3.96 -0.3% 11.47 39.7% 

OC 65.95 2.1% 4.20 5.8% 8.16 -0.6% 

OO 83.21 28.8% 3.83 -3.5% 12.15 48.0% 

 
Fig. 7.5 Force vs displacement curves of the bumpers subjected to the 40% overlap impact at 5 m/s.  
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The force vs displacement curves of the two bumpers are plotted in Fig. 7.5. Different 

from the curve of CC which shows a high degree of fluctuation, the curve of CO is 

quite smooth, which is a desirable feature because it can deliver a relatively constant 

deceleration in an impact. The numerical results in Table 7.6 show that Ec increase of 

CO reaches 39.7% in comparison with that of CC, which is considerably higher than 

that obtained in the full overlap impact at 5 m/s. This performance improvement is 

because the relatively small bending deformation makes the pattern followed better, 

leading to the complete diamond mode being formed in the origami crashcan in CO. Eb 

of the two bumpers, on the other hand, are very close due to the identical failure mode 

of their respective beams. Pm of CO is 27.2% higher than that of CC primarily because 

of the superior performance of the origami crashcan in CO.  

 

7.3.2.2 Performance of the origami beam 

  

The response of OC is presented and compared with that of CC, both of which are 

composed of identical conventional crashcans but different types of beams, in order to 

examine the behaviour of the origami beam subjected to the 40% overlap impact at 

5 m/s. The crushing process of OC is shown in Fig. 7.4(c). It can be seen that the 

conventional crashcan on the side of impact still fails in the symmetric mode. The 

origami beam, however, shows no obvious sign of longitudinal folding following the 

pattern, and collapses in the localized flattening mode as in the case of the 

conventional beam in CC.  

 

The force vs displacement curves of the two bumpers plotted in Fig. 7.5 show that the 

entire crushing process of each bumper can be approximately broken down into two 

stages based on displacement.  

 Stage I (0 – 50 mm): the main deformation mechanism is the localized flattening of 

the beam segment in the neighbourhood of the crashcan on the impact side.  

 Stage II (50 mm – 200 mm): the main deformation mechanism is the crushing of 

the crashcan on the impact side.   

 



www.manaraa.com

Chapter 7 The Complete Bumper 

- 161 - 

 

The pattern on the origami beam in OC does not make a significant difference at either 

stage. As a result, Eb of OC, listed in Table 7.6, is very close to that of CC, and the 

difference in the Pm of them is also negligible. 

 

7.3.2.3 Combination of the origami crashcan and the origami beam 

 

The crushing process of bumper OO, which is composed of an origami beam and two 

origami crashcans, is presented in Fig. 7.4(d). It can be seen that the origami crashcan 

on the impact side fails in the complete diamond mode. No severe distortion by 

bending deformation is observed. The origami beam still collapses in the localized 

flattening mode. Therefore it is indicated that the collapses of the two types of origami 

structures are not noticeably affected by each other in the 40% overlap impact at 5 m/s.  

 

The force vs displacement curves plotted in Fig. 7.5 show that the curve of OO stays 

close to that of OC when the origami beam is crushed, and subsequently jumps to the 

neighbourhood of that of CO when the origami crashcan is folded. The numerical 

results in Table 7.6 show that an Ec increase of 48.0% is achieved for OO, whereas no 

Eb increase is attained in the same bumper. Despite the less satisfactory performance of 

the origami beam in OO, Pm of OO is the highest among the four bumpers, with an 

increase of 28.8% being obtained compared with that of CC. Therefore it can be 

concluded that OO is the most efficient design in terms of energy absorption in this 

loading scenario. 

 

The results presented above and in Section 7.3.2.2 indicate that the origami beam does 

not help to significantly improve the energy absorption of a bumper subjected to the 40% 

overlap impact at 5 m/s. This is mainly due to the localized flattening mode of the 

origami beam on which the influence of the pattern is negligible.  

 

7.3.3 40% overlap impact at 20 m/s  
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(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 7.6  40% overlap crushing processes at 20 m/s of (a) CC, (b) CO, (c) OC, and (d) OO. 
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The crushing processes of the four bumpers subjected to this test are shown in Fig. 7.6 

and their force vs displacement curves are plotted in Fig. 7.7. The numerical results are 

compiled in Table 7.7. 

 

All of the four bumpers show failure modes very close to those obtained from the 40% 

overlap impact at 5 m/s. However, the bending deformation in both types of crashcans 

is less obvious than that in the 40% overlap impact at 5 m/s, leading to that the 

crashcans fold as though loaded by an axial compression. The results in Tables 7.6 and 

7.7 show that Pm of all of the bumpers are noticeably increased when the loading speed 

Table 7.7  Numerical results of the bumpers subjected to the 40% overlap impact at 20 m/s 

Model Pm (kN) Pm increase Eb (kJ) Eb increase Ec (kJ) Ec increase 

CC 74.13 - 5.15 - 8.39 - 

CO 95.20 28.4% 4.69 -8.9% 13.14 56.6% 

OC 79.88 7.8% 5.28 2.5% 9.27 10.5% 

OO 97.47 31.5% 4.71 -8.5% 13.48 60.7% 

 
Fig. 7.7 Force vs displacement curves of the bumpers subjected to the 40% overlap impact at 

20 m/s. 
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rises from 5 m/s to 20 m/s. The reduced bending deformation and the strain rate effects 

are considered to be the main causes of the increase in energy absorption. 

 

An Ec increase of over 50% is obtained for both CO and OO in comparison with that of 

CC, whereas Eb of OC and OO are close to that of CC. In addition, OO remains the 

most efficient bumper design in terms of energy absorption, with a Pm increase of 31.5% 

being achieved in comparison with that of CC. This result once again demonstrates the 

usefulness of the origami structures.  

 

 
7.4 Summary 
 

Four bumpers, CC consisting of a conventional beam and two conventional crashcans, 

CO consisting of a conventional beam and two origami crashcans, OC consisting of an 

origami beam and two conventional crashcans, and OO consisting of an origami beam 

and two origami crashcans, have been designed and analyzed in this chapter to 

investigate the failure modes and energy absorptions of the origami tube and the 

origami beam, developed in Chapters 4, 5, and 6, when subjected to complex loading. 

Three realistic impact tests, the full overlap impact at 5 m/s, the 40% overlap impact at 

5 m/s, and the 40% overlap impact at 20 m/s, have been conducted on each bumper.  

 

The numerical results show that the origami crashcan, adopted in bumpers CO and OO, 

integrates well with either a conventional beam or an origami one. The performances 

of the origami crashcan subjected to the three impact tests are summarized in Table 7.8. 

It can be seen that the origami crashcan performs quite well except for in the full 

overlap impact at 5 m/s. The less satisfactory performance in this loading scenario is 

caused by the large bending deformation in the origami crashcan during the crushing 

process which makes it fail in the less efficient incomplete diamond mode. This result 

indicates that the energy absorption of the origami crashcan is reduced when subjected 

to a large bending moment in addition to an axial force, which is undesirable for an 

energy absorption device. Increasing the number of modules in the origami crashcan, 
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which was reported in Chapter 4 to have the effect of improving the bending capacity 

of the origami crashcan, can be used to improve the energy absorption in this loading 

scenario. 
 

 
 

The origami beam, adopted in bumpers OC and OO, is also found to work well with 

either conventional crashcans or origami ones. The performances of the origami beam 

under the three impact tests are summarized in Table 7.9. The results indicate that the 

origami beam only significantly improves the energy absorption in the full overlap 

impact at 5 m/s, and could even slightly reduce the energy absorption in the 40% 

overlap impacts when combined with origami crashcans. This main reason for the 

inability of the origami beam to perform well in the 40% overlap impacts is that local 

flattening deformation dominates the collapse of the beam, and therefore the desirable 

longitudinal folding mode cannot be triggered. Reinforcing the regions of the bumpers 

where the beam connects the crashcans is one approach to improving the overall 

structural performance. Despite that, the current origami beam design can still have 

some merit in terms of balancing the responses of a bumper in different loading 

scenarios. It has been shown that the energy absorption improvement of the origami 

crashcan in the full overlap impact at 5 m/s is lower than those in the 40% overlap 

impacts at 5 m/s and 20 m/s. The energy absorption increase of the origami beam in 

the full overlap impact at 5 m/s, on the other hand, is higher than those in the 40% 

overlap impacts at 5 m/s and 20 m/s. Therefore the relatively high energy absorption of 

the origami beam can to some extent compensate for the relatively low energy 

Table 7.8  Performances of the origami crashcan subjected to the three impact tests  

Impact test Failure mode 
Ec increase* 

CO OO 

Full overlap at 5 m/s Incomplete diamond mode 28.9% 28.7% 

40% overlap at 5 m/s Complete diamond mode 39.7% 48.0% 

40% overlap at 20 m/s Complete diamond mode 56.6% 60.7% 

* Ec increase is calculated in comparison with that of CC. 
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absorption of the origami crashcan in the full overlap impact at 5 m/s, resulting in a 

balanced performance of the bumper in different impact scenarios.   
 

 
 

The mean crushing forces of the four bumpers subjected to the three impact tests are 

summarized in Table 7.10. It can be seen that bumper OO has the highest mean 

crushing force in all three impact tests. Therefore combining both types of origami 

structures in one bumper can lead to the most efficient design in terms of energy 

absorption.  
 

 
 

To this point, it is clear that the origami crashcan satisfies all of the main requirements 

for a good energy absorption device: low peak force, high energy absorption, stable 

and predictable failure mode under realistic loading scenarios, reasonable bending and 

torsion capacity, and low cost. Therefore, it can be concluded that the origami crashcan 

has great potential as a high-performance energy absorption device. For the origami 

beam, while the results in this chapter show that the longitudinal folding mode is also 

stable and efficient in terms of energy absorption, further design modification is 

Table 7.10  Mean crushing forces of the bumpers subjected to the three impact tests*  

Impact test CC CO OC OO 

Full overlap at 5 m/s 83.21 98.12 84.85 102.17 

40% overlap at 5 m/s 64.58 82.15 65.95 83.21 

40% overlap at 20 m/s 74.13 95.20 79.88 97.47 

* The unit of the data in the table is kN. 

Table 7.9  Performances of the origami beam subjected to the three impact tests  

Impact test Failure mode 
Eb increase* 

OC OO 

Full overlap at 5 m/s Longitudinal folding mode 9.8% 16.1% 

40% overlap at 5 m/s Localized flattening mode 5.8% -3.5% 

40% overlap at 20 m/s Localized flattening mode 2.5% -8.5% 

* Eb increase is calculated in comparison with that of CC. 
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required to improve the performance of the origami beam if it is to be used as a 

bumper component.  
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CHAPTER 8 
FINAL REMARKS  

 

 

 
8.1 Main Achievements 
 

This dissertation is concerned with the design and analysis of thin-walled structures 

with pre-folded origami patterns on their surface as high-performance energy 

absorption devices. The principal achievements are summarized in the following 

paragraphs.  

 

First, an experimental study of a type of previously reported thin-walled square tube 

with pre-fabricated pyramid patterns on the surface has been conducted. A simple 

manufacturing approach has been developed to construct tube samples with two 

different designs. Quasi-static axial crushing tests on these samples reveal that the 

octagonal mode, despite being proven numerically to be efficient in terms of energy 

absorption, cannot be consistently triggered. This shortcoming has led us to seek new 

origami patterns to improve the energy absorption of thin-walled tubes.  

 

A new type of thin-walled tubular energy absorption device known as the origami tube 

which also has origami pattern pre-manufactured on the surface has been developed 

and analyzed. A family of origami patterns, including a basic one for square tubes and 

several modifications for rectangular tubes, polygonal tubes, and two types of tapered 

tubes have been worked out and a set of independent geometric parameters for each 

pattern has been identified. The origami pattern on the surface of the origami tube acts 
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as a form of geometric imperfection to reduce the initial buckling force and, more 

importantly, as a failure mode inducer to trigger the complete diamond mode in a tube 

which is more efficient in terms of energy absorption because it doubles the number of 

travelling plastic hinge lines at each corner of the tube. In addition, those origami 

patterns have several additional properties. They are designed in a modular way so that 

origami tubes of various sizes can be easily obtained by changing the number of 

modules axially. The surface of the tube with origami patterns is developable so that 

the origami tube can be conveniently and accurately constructed out of a flat sheet of 

material with little in-plane stretching.  

 

An extensive numerical study of the performances of origami tubes with various 

configurations when subjected to quasi-static axial crushing has been carried out. The 

results show that the complete diamond mode can be successfully induced in a square 

origami tube, and both low peak force and high energy absorption are achieved in a 

single tube with the new design. A parametric study has been conducted on square 

origami tubes to investigate the effects of a series of geometric parameters. It is found 

that by properly selecting the pattern geometry, the mean crushing force can be 

increased by over 80% in comparison with that of a conventional square tube with 

identical surface area and wall thickness, whilst a peak force reduction by more than 

30% can still be reached. Furthermore, the axial crushing of origami tubes with 

rectangular cross sections, polygonal cross sections, and two types of tapered shape has 

also been analyzed. The results demonstrate that the complete diamond mode can 

always be triggered in origami tubes with those profiles provided that a proper pattern 

geometry is selected, leading to both low peak force and high mean crushing force. 

 

The axial crushing behaviour of a square origami tube made of mild steel and 

subjected to four types of boundary conditions, free on both ends, pinned on both ends, 

clamped on both ends, pinned on one end and rigidly connected to a deformable 

supporting structure on the other, respectively, have been obtained via numerical 

simulation and compared. The results indicate that the complete diamond mode is not 

sensitive to boundary conditions on the ends. Subsequently, a simply supported square 
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origami tube made of three commonly used metallic materials, mild steel, high strength 

steel, and aluminium alloy, respectively, has been axial crushed. It is found that the 

complete diamond mode is also independent of material mechanical properties 

provided that ductile materials are used. A square origami tube reinforced by a centre 

web has been analyzed. Both reduced peak force and increased mean crushing force 

are attained compared with those of a reinforced conventional square tube. 

Furthermore, the bending capacity and torsion capacity of six square origami tubes 

have been examined. The results indicate that the origami tube has comparable 

bending capacity and torsion capacity with those of the commonly used conventional 

tubes with dents. Finally, a type I tapered origami tube has been axially crushed at 

5 m/s and 20 m/s, respectively. A consistent and predictable response is observed in 

the origami tube, and substantial energy absorption is achieved in comparison with that 

of conventional ones.  

 

In addition to numerical analysis, a theoretical study of the axial crushing of square 

origami tubes has been conducted. A simplified basic folding element has been 

established to describe the complete diamond mode. Three main sources of energy 

absorption have been identified, and the energy dissipated from each source has been 

calculated. Applying the upper bound theory, a concise mathematical formula has been 

derived to calculate the mean crushing force of a square origami tube with specified 

geometry and material properties. Comparison between theoretical prediction and 

numerical results shows a good agreement. Since properly designed rectangular 

origami tubes and tapered ones have energy absorption close to that of square ones 

with identical surface area and wall thickness, the theoretical formula can also be used 

to approximately estimate the mean crushing forces of origami tubes with those two 

profiles.  

 

Quasi-static axial crushing experiments on several square origami tube samples have 

been carried out. A simple manufacturing procedure has been developed to construct 

the samples. The experimental results show that the complete diamond mode is formed 

in the samples and both peak force reduction and mean crushing force increase are 
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attained. Furthermore, the simple manufacturing procedure has been further refined 

and high quality prototype tubes have been constructed.  

 

A new type of curved thin-walled beam with pre-manufactured origami pattern on the 

surface, known as the origami beam, has been designed and analyzed for the purpose 

of energy absorption. The origami pattern for square origami tubes has been slightly 

modified to suit the curved surface of the origami beam. Similar to that for the origami 

tube, the pattern has the effect of inducing new failures modes, which are efficient in 

terms of energy absorption, in the origami beam subjected to quasi-static lateral 

bending. Two types of pattern arrangements on the origami beam have been proposed. 

One is to apply origami pattern along the entire beam. Numerical simulation results 

show that a new failure mode known as the longitudinal folding mode, which features 

folding of beam walls in the longitudinal direction during the crushing process, can be 

triggered in the origami beam, leading to reduced peak force and increased overall 

energy absorption. As much as 23.6% specific energy absorption increase can be 

attained while the peak force is still reduced by 12.9%. The alternative is to apply 

origami pattern near both ends of a beam while leaving the middle part intact. The 

numerical results indicate that an origami beam designed in this way fails in a new 

mode, referred to as the mixed mode, which features both longitudinal folding of beam 

walls and bending of a localized plastic hinge. The mixed mode is found to be even 

more efficient than the longitudinal folding mode in terms of energy absorption. 

 

Finally, both the origami tube and the origami beam are used to form four automobile 

frontal bumpers. Three impact tests, the full overlap impact at 5 m/s, the 40% overlap 

impact at 5 m/s, and the 40% overlap impact at 20 m/s, have been respectively 

conducted on each bumper. Numerical results show that the origami tube integrates 

well with either a conventional beam or an origami one, and can substantially improve 

the energy absorption of the bumper in all three loading scenarios. The origami beam, 

on the other hand, helps to significantly increase the energy absorption of the bumper 

only in the full overlap impact at 5 m/s, regardless of working with conventional 

crashcans or origami ones. However, the origami beam can still be useful through 
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balancing the performances of a bumper in different loading scenarios. The bumper 

designed by combining the two types of origami structures is found to be most efficient 

in terms of energy absorption.     

 

 
8.2 Future Work 
 

The novelty and feasibility of utilizing origami patterns to improve the performance of 

thin-walled energy absorption devices have been established in this dissertation. The 

research reported here opens up many new research opportunities.  

 

A thorough theoretical analysis of the complete diamond mode of the origami tube can 

be conducted. Two important questions are to be answered. One is how to determine 

the exact amount of pre-folding that can take the origami tube to the complete diamond 

mode without reversing back to other principle failure modes. For instance, the corner 

width of the origami pattern is crucial in the design of the origami tube. It would be 

desirable if the critical value of the corner width can be calculated analytically. The 

other is how to accurately estimate the energy absorption of the origami tube failing in 

the complete diamond. The simple formula derived in Chapter 5, while agreeing well 

with numerical results, does not capture all of the main features of the complete 

diamond mode observed from the numerical analysis. A more advanced basic folding 

element is to be built, and a suitable approach to quantify the extension and shear 

deformation in the origami tube is to be developed.   

 

The successful application of origami patterns in the design of thin-walled energy 

absorption structures with closed cross sections raises the question of whether the same 

approach also work for thin-walled structures with open cross sections, i.e., whether 

corrugated shells with origami patterns on the surface can bear some useful properties 

from the perspective of energy absorption. This type of thin-walled structure is not 

only widely applied as cores of sandwich plates, but could also provide a solution to 

the sub-skin structures of passenger car bonnets which, as the main cause of pedestrian 
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head injuries (Crandall et al., 2002), are facing great difficulty in complying with the 

newly launched EU regulation.  
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APPENDIX I:  
 
 
A detailed geometric analysis of the origami patterns for two types of tapered tubes 

presented in Chapter 4 is conducted here.  

 

 
1. Pattern for Type I Tapered Tube 
 
Figure A.1 shows the pattern design for type I tapered tube. Five geometric parameters, 

i.e., a1, a2, b, c, and l, are required to completely define the pattern. Due to the 

symmetric nature, only a quarter of the pattern is analyzed below. 

  

 

 
Fig. A.1 Pattern for type I tapered tube. 
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For a quarter of the pattern presented in Fig. A.2, the lengths of the following creases 

are known:  
 

 

1
AC

2
OF

AO

CG FI

DE

2

2

2

al

al

l l
bl l

l c

 

 
 

  

 



 (A.1) 

 

And the following geometric relationships are also known:  
 

 CD DF FE EC

GH HI

l l l l
l l

  
 

 (A.2) 

 

  
Fig. A.2  A quarter of the pattern for type I tapered tube in the developed configuration. 
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Then the task is to calculate the lengths of AB, BO, BD, CD, EH, and GH in order to 

determine the positions of all of the nodes of the pattern. The lengths of EH, GH, and 

CD are first calculated: 
 

 

LH LE
EH

2 2 2 22 1
CF 1 CN NF

CF 1
GH

2 2 2 2
CD 1 DL CL 1

2 2

( )
2

2 2
1
2

l l b cl

a al d l l l

l dl

l e l l c d

   


     

  

     


 (A.3) 

 

in which d1 and e1 denote the lengths of CF and CD, respectively. 

 

To calculate the lengths of BD, AB, and BO, first introduce three angles 1 , 1 , and 1  
 

 

DL
1

CL 1

NF 2 1
1

CN

1 1 1

arctan arctan

arctan arctan
2

l c
l d
l a a
l l





  

  

 

 

  



 (A.4) 

 

Then the lengths of BD, AB, and BO can be calculated as  
 

 

1 1
BD BM DM 1 1

AB 1 CD 1 1 1

BO 2 AO AB 1

sin
2 2

cos cos

f al l l e

l l l e
l l l l l l



 

     


  
     


 (A.5) 

 

in which f1 / 2, l1, and l2 denote the lengths of BD, AB, and BO, respectively. 
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With the lengths of all of the creases being obtained, the position of each node of the 

pattern can be calculated, and the layout of the pattern can then be completely 

determined.  

 

 

 

 

If we fold the pattern in Fig. A.2 along the creases, a quarter of a tapered tube as 

shown in Fig. A.3 can be obtained. Two more parameters, i.e., the lengths of AJ and 

JO, are needed to determine when the folding process should be finished. Let h1 and h2 

denote the lengths of AJ and JO respectively and introduce two more angles 1  and 1 , 

the following geometric relationships can be obtained 
 

 

2 2 2 22 1
CF 1 CK KF 1 2

2 2 2 2 2 2 2 2
BJ 1 AB AJ BO OJ 1 1 2 2

CK 1 2
1

KF 2 1
2 2 2 2 2

GH HI GI 1 1
1 2

GH HI 1

( ) ( )
2

2( )arctan arctan

2arccos arccos
2

a al g l l h h

l n l l l l l h l h
l h h
l a a
l l l d g

l l d





 
     


         
 

  
   

 


 (A.6) 

 

Fig. A.3  A quarter of the pattern for tapered tube I in the folded configuration. 
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in which g1 and n1 denote the lengths of CF and BJ, respectively. 

 

Then the coordinate of points D and E can be worked out:  
 

1
2 1

1 1 1 1 1
1 1

D , ,
2

E sin( ), cos( ),
2 2 2 2 2 2

f h n

a d d c  

  
   


        

 

 

Note that DEl c , i.e. 
 

 2 2 2 21 1 1 1 1 1
1 1 2 1[ sin( ) ] [ cos( ) ] ( )

2 2 2 2 2 2 2
a d f d ch n c 

            (A.7) 

 

Now h1 and h2 can be calculated by solving Eqs. (A.6) and (A.7) simultaneously. No 

close-form solutions can be obtained due to the existence of transcendental functions in 

Eq. (A.6), so that h1 and h2 have to be calculated numerically. When h1 and h2 are 

worked out, all of the nodes of the pattern in 3D space can be readily obtained, and the 

shape of the tube can then be completely determined.   

 

 
2. Pattern for Type II Tapered Tube 
 
The pattern design for type II tapered tube, which can be completely determined by 

four geometric parameters, i.e., a1, a2, c, and l, is shown in Fig. A.4. This pattern also 

has symmetric property and therefore only a quarter is analyzed below. 
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The lengths of the following creases of the pattern are known 
 

 

1
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2
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DE

2

2

al

al

l l
l c

 

 



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 (A.8) 

 

Fig. A.5  A quarter of the pattern for type II tapered tube in the developed configuration. 

  
Fig. A.4  Pattern for type II tapered tube. 
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And the following geometric relationships are also known:  
 

 CD DF FE ECl l l l    (A.9) 

 

Then the position of all of the nodes of the pattern can be obtained by calculating the 

lengths of AB, BG, BD, and CD.  

 

The length of CF, denoted as d2, can be calculated as  
 

 2 22 1
CF 2 ( )

2
a al d l 

    (A.10) 

 

Then the length of CD, denoted as e2, is  
 

 2 2
CD 2 2

1
2

l e c d    (A.11) 

 

To calculate the lengths of BD, AB, and BG, we first calculate three angles 2 , 2 , 

and 2  
 

 

DP
2

CP 2

RF 2 1
2

CR

2 2 2

arctan arctan

arctan arctan
2

l c
l d
l a a
l l





  

  



 


  



 (A.12) 

 

Then the lengths of BD, AB, and BG are 

 

 

2 1
BD BQ DQ 2 2

AB 3 CD 2 2 2

BG 4 AG AB 3

sin
2 2

cos cos

f al l l e

l l l e
l l l l l l



 

     


  
     


 (A.13) 
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in which f2 / 2, l3, and l4 denote the lengths of BD, AB, and BG, respectively. 

 

Now the positions of all of the nodes of the pattern can be readily calculated from the 

lengths of the creases, and the layout of the pattern can then completely determined.  

 

A quarter of a tapered tube as shown in Fig. A.6 can be obtained by folding the pattern 

in Fig. A.5 along the creases. In order to determine when the folding process should 

cease, the lengths of AH and HI, respectively denoted by h3 and h4, need to be 

calculated.  

 
 

To start with, the following geometric relationships can be obtained due to symmetry 

of the pattern: 
 

 
BD ME

DK EK

2 4

l l
l l





 




 


 (A.14) 

 

 

Fig. A.6  A quarter of the pattern for type II tapered tube in the folded configuration. 
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Therefore  

 

 DK EK
2

2
l l c   (A.15) 

 

Then the lengths of BN and KM can be calculated 

 

 

1
BN BH HN 3 2

KM KE EM 2

cos
2

2
2

al l l l

l l l c e

    

    

 (A.16) 

 

Note that BN KMl l , i.e. 
 

 1
3 2 2

2cos
2 2
al c e     (A.17) 

 

Solving Eq. (A.17) for 2  
 

 2 1
2

3

2arccos
2

e c a
l


 

  (A.18) 

 

Now h3 and h4 can be calculated as 

 

 
3 AB 2 3 2

2 2 2 21 2
4 BG BJ 4 3 2

sin sin

( cos )
2 2

h l l

a ah l l l l

 



 


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

 (A.19) 

 

With h3 and h4 being attained, the coordinates of all of the nodes of the pattern in the 

folded configuration can be readily obtained, and the shape of the tube in 3D space can 

then be completely determined.  
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APPENDIX II 
 

 
The following publications are related to the work presented in this dissertation. 
 
Ma, J., You, Z., Wang, B., and Cheng, G. (2009), Origami Crashcan, China Patent 
Application No. : 200910013553.X (pending). 
 
Ma, J., Le, Y., and You, Z. (2010), Axial crushing tests of thin-walled steel square 
tubes with pyramid patterns, 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics, and Materials Conference, Orlando, FL, USA, April 12-15. 
 
Ma, J. and You, Z. (2010), The origami crash box, 5th International Conference on 
Origami in Science, Mathematics and Education and Folding Convention, Singapore, 
July 13 – 17. 
 
Ma, J. and You, Z. (2010), A novel thin-walled tube with origami patterns as energy 
absorption device, ASME International Mechanical Engineering Congress and 
Exposition, Vancouver, BC, Canada, November 12-18. 
 
You, Z. and Ma, J. (2010), Energy absorption of thin-walled tubes with origami 
patterns, IASS 2010 "Spatial Structures – Permanent and Temporary", Shanghai, 
China, November 8-12. 
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